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Abstract

We develop a trade model where the horizontal proximity between a firm’s technol-
ogy and that of its suppliers shapes input efficiency. Trade policies, by expanding or re-
stricting firms” access to foreign suppliers, influence these horizontal technology choices
and, through input-output linkages, affect the technological interdependence between
countries. We characterize these effects and test them using technological similarity mea-
sures derived from patent texts. Quantification of the model shows that an electronics
and semiconductor embargo by the U.S. against China triggers technological decoupling
between the two countries and realignment among other countries. These endogenous
technological shifts double the global welfare loss caused by the embargo.
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1 Introduction

Recent global events have driven major economies to adopt strategies aimed at reducing
their economic engagement with geopolitical rivals. For instance, the European Union is di-
versifying its sources of essential goods to mitigate supply chain disruption risks, while the
U.S. has implemented policies to limit China’s access to advanced technology. Through ini-
tiatives like ‘friend-shoring” and ‘Made in China 2025,” both the U.S. and China are working
to decrease reliance on critical goods from each other.

These shifts raise a growing concern: reduced access to, and dependence on, key foreign
technologies may push firms toward alternative technological paths, potentially dividing the
world into blocs of countries with incompatible technological systems. For example, restric-
tions on Chinese chipmakers’ access to x86 instruction set licenses have led them to develop
proprietary instruction sets or adopt open-source alternatives like RISC-V.! Similarly, in re-
sponse to China’s control over cobalt, a critical battery component, global manufacturers are
developing cobalt-free batteries.” Both shifts force adaptations throughout the supply chain:
new computer chips necessitate compatible operating systems and software adjustments,
while cobalt-free batteries require updates to charging protocols and car designs. These ex-
amples illustrate how firms’ technological choices are shaped by access to foreign inputs in
their supply chains, and how policies affecting this access can either promote technological
convergence across global supply chains or fragment them into incompatible systems.

This paper makes two contributions. First, we construct a tractable model to formalize
the link between trade and the horizontal technological choices of firms. This enables us,
for the first time in the literature, to assess whether a trade shock leads to technological
divergence or convergence. Second, using a new measure of technology similarity based on
the texts of global patents, we test and quantify the model. We apply the model to assess the
impacts of a U.S. embargo on Chinese electronics and semiconductor imports. We find that
the embargo leads to technological decoupling between the two countries and a realignment
of others. These endogenous changes exacerbate—rather than alleviate—the welfare losses
from the embargo, accounting for nearly all of the U.S. losses and half of the global losses.

In our model, firms differ in vertical efficiency and their endowed horizontal technol-
ogy, denoted by a point 0 in technology space T. Following the seminal work of Lancaster
(1979), we interpret each point in T as a specific ‘technological path” composed of particu-

lar technical components or engineering features. Points that are closer in T correspond to

1x86 is a CPU architecture developed jointly by Intel and AMD. Chipmakers need a license to create CPUs
compatible with x86, which is essential for these CPUs to support some mainstream operating systems, such
as Windows, and the software running on these systems. Since 2018, Chinese chipmakers’ requests for license
renewal have been denied due to national security concern.

2For example, see https://www.cnbc.com/2021/11/17/samsung-panasonic-and-tesla-embracing-cobalt
-free-batteries-.html, accessed February, 2024.
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more similar (and hence more compatible) technologies. We label technologies ‘horizontal’
because no technology is inherently superior to another; rather, they differ by their distance
from one another. A firm’s endowed technology 6 represents the path most suited to its in-
trinsic capabilities, shaped by factors outside our model such as accumulated know-how or
key expertise of the firm. The distribution from which firms draw 0 varies across countries
and sectors, reflecting countries” comparative advantage over different technologies.

Given its endowed 0, each firm chooses a production technology 6 € T. Choosing a
technology closer to the ones used by key suppliers reduces effective input costs by enhanc-
ing compatibility, but deviating from 6 also entails an adaptation cost that grows with the
distance ||6 — 0||. After deciding on 6, firms sample a set of suppliers and choose the one
that offers the best compatibility-adjusted price for each intermediate input. They then pro-
duce and sell the output to final consumers and downstream firms. In equilibrium, given the
country-specific exogenous distributions governing 6, firms anticipate the choices of all other
firms and make their technology and supplier choices accordingly.

The equilibrium is characterized by a fixed point in the distributions of chosen technolo-
gies across firms in all countries and sectors—an infinite-dimensional object. We establish
that there generically exists an equilibrium in which firms’” technology choices vary contin-
uously with their technology endowment, and that this equilibrium is unique provided the
cost of technology adaptation is not too small and the benefit of compatibility is not too large.
In the limiting case where endowment distributions are degenerate and compatibility yields
no benefit, our model simplifies to the model of Caliendo and Parro (2015). Thus, the model
retains the flexibility of canonical quantitative trade models.

Our model uncovers novel relationships between trade and technology, which we both
formalize and empirically test. First, when compatibility drives firms’ decisions, those whose
endowed technologies are closer to a particular foreign country’s technological profile are
more likely to adopt similar technologies and import from that country. This results in a
correlation between a firm’s importing patterns and its technology similarity with exporting
countries. Second, lowering tariffs with a specific trading partner incentivizes firms in the
importing country to shift their technologies toward that partner’s technologies, implying a
causal link between bilateral trade costs and technological convergence.

Our model also offers a fresh perspective on existing empirical regularities. For instance,
firms that import from a country often export to the same country, while exporters to one
market are more likely to serve that market’s neighboring markets if those neighbors share
similar technologies. These patterns, previously rationalized through state-dependent trade
costs (Morales et al., 2019; Li et al., 2024), can be explained here through technology compat-
ibility.

On the normative side, the model highlights a key externality in technology choice.
When a firm chooses its technology, it also affects the production costs of domestic and for-



eign downstream firms, who may face lower production costs if this upstream firm chooses
a closer technology, an effect not internalized by the firm. Such externalities exist both
within and across borders and are amplified by input-output linkages. In a one-sector, two-
symmetric-country special case of the model, we show that starting from the decentralized
equilibrium, shifting one country’s technology toward the other’s increases welfare in both
countries. Thus, firms tend to stay too close to their endowed technology.

We test and quantify the importance of our model’s mechanisms. Central to these ex-
ercises is a new measure of horizontal technology similarity across firms and countries. To
construct this measure, we use the texts of worldwide patents and employ a state-of-the-art
large language model to generate numerical vectors, or ‘embeddings,” that summarize each
patent’s content. We then compute bilateral similarities at various levels of aggregation us-
ing the cosine similarity of these embeddings. We validate our measure by comparing it with
other proxies of bilateral similarities. We also demonstrate that our empirical results remain
robust when patent citations are used as a proxy for technology similarity.

We undertake two main empirical tests. First, a premise of our model is that firms make
joint technology and supplier choices with compatibility considerations. Using Chinese firm
and customs data, we show that firms whose technologies are more similar to a partner
country’s are more likely to import from that country—a relationship that remains robust
to a range of controls, fixed effects, and the exclusion of foreign affiliates. Additional evi-
dence supports technology compatibility as the primary channel rather than technological
diffusion or other information-based explanations. Second, our model implies that lowering
bilateral trade barriers increases bilateral technology similarity. Exploiting exogenous vari-
ation in HS-6-level tariffs arising from changes in most-favored-nation (MFN) rates, which
affects some partners (those subject to the MEN tariffs) but not others, we estimate a nega-
tive and economically meaningful elasticity of bilateral technology similarity with respect to
tariffs, in line with the model’s prediction.3

We parameterize the model using data on 29 major countries and 19 sectors. For tractabil-
ity, we let T be the real line and assume that firms in each country and sector draw their en-
dowment technology from a respective Normal distribution. We show that under a quadratic
approximation to firms’ technology choice problem, the chosen technologies in each country-
sector also follow a Normal distribution, with its mean and variance determined by general
equilibrium forces. This structure makes the model computationally tractable.

Calibration of the model requires mapping the horizontal technologies of countries and
sectors to the real line. We choose the technology positions by matching the model’s im-
plied pairwise technology similarities to those obtained from patent texts.* In addition, two

SMEN tariffs can be endogenously chosen to promote trade. Following Boehm et al. (2023), we address this
concern by excluding from the sample the largest exporter in each importer-product pair.
“We do not seek to explain, for example, why the auto sector uses more similar technologies to the auto parts



parameters are key in shaping the impacts of technology choice: the cost of incompatibil-
ity with suppliers and the cost of deviating from a firm’s endowed technology. We identify
these parameters by matching the two reduced-form estimates: (i) the correlation between
import behavior and technology similarity, and (ii) the elasticity of technology similarity
with respect to tariffs. Using these parameters and the calibrated technological distribution
of countries, the model implies a component of trade costs reflecting technology incompati-
bility. Residual iceberg trade costs are then chosen to match observed bilateral trade shares.

Our calibration suggests that technology compatibility is an important driver of sourcing
decisions. The ad-valorem equivalent trade cost due to incompatibility is around 10%. Stan-
dard estimation suggests that to account for the observed bilateral trade (or the lack thereof),
trade costs need to be well above 100%, often raising the question on the source of such
high costs (Anderson and van Wincoop, 2004). Our model provides a partial explanation:
technological incompatibility between countries.

We assess the impact of a trade conflict between the U.S. and China by implementing a
counterfactual experiment, in which the U.S. and its allies impose an embargo on Chinese
electronics and semiconductor imports. We find that the embargo leads to a 0.55% welfare
loss for China, a 0.05% loss for the U.S., and a global loss of 0.23%. In response to the em-
bargo, the technologies of firms in China diverge from those of other countries, leading to
higher input costs for foreign downstream firms and triggering realignments of technologies
in other countries, including the U.S. Contrary to the intuition that substitution adjustments
to negative shocks alleviate welfare loss, the divergence between China and the U.S. ampli-
fies the loss for both, due to the externality in technological choice. Almost all of the U.S.
welfare loss and half of the global welfare loss are due to endogenous technological changes.

Our paper engages with several strands of the literature. The central idea—that firms’
technology choices are shaped by compatibility requirements—has been explored in the
trade literature. However, existing models often focus on stylized settings with two countries
and two technologies (e.g., domestic vs. foreign), limiting their quantitative generalizabil-
ity.”’® We allow for multiple technologies, countries, and input-output linkages. Our model
builds on Lancaster (1979)’s work on endogenous product differentiation, but emphasizes

sector than to the apparel sector; rather, we are interested in, say, whether the U.S. auto sector is more similar to
Germen or Canadian auto sector. Consequently, we remove sector-pair fixed effects from our calibration targets,
isolating cross-country variation.

5For example, Carluccio and Fally (2013) examine how supplying foreign firms using a ‘modern’ technology
can reduce input availability for domestic firms using a ‘traditional’ technology; Costinot (2008) develops a
two-country model to explore how horizontal standardization affects welfare. Given that there are multiple
countries in the world economy, each with potentially different technologies, mapping these technologies to a
binary choice in the model can be subjective.

The concept of compatibility-driven technology choice has also been studied outside of trade. For example,
Akcigit et al. (2016) present a growth model where firms sell ideas that diverge from their core competence,
Lazear (1999) models language choice driven by communication incentives, and Basu and Weil (1998) model
technology transfer considering whether the technology is appropriate for a country.



compatibility with suppliers rather than consumers.

The network aspect of our model builds on recent works such as Jones (2013), Chaney
(2014), Oberfield (2018), Lim (2018), Boehm and Oberfield (2020), Acemoglu and Azar (2020),
Demir et al. (2024), Eaton et al. (2022), Dhyne et al. (2023) and Baqaee and Farhi (2024). In
particular, we achieve tractable network formation through extreme-valued draws, similar
to the sourcing model of Boehm and Oberfield (2020) and the diffusion model of Buera and
Oberfield (2020). Our focus on technology choice in a network relates to Demir et al. (2024),
which studies network formation under (vertical) quality choice. Our main contribution to
this literature is to incorporate horizontal technology choice into a model with endogenous
production networks.

The trade aspect of our model builds on the quantitative trade literature (e.g., Eaton
and Kortum, 2002; Caliendo and Parro, 2015; see Costinot and Rodriguez-Clare, 2014 for an
early review), with two main differences. First, it incorporates horizontal technology choice,
which we show is important in shaping the effects of trade policies. To accommodate this
mechanism, in our model, heterogeneous firms choose among a continuum of options and
then interact with the entire distribution of other firms. We develop tools for establishing
the existence and uniqueness of equilibrium in such environments, which differ from those
in standard trade models where the equilibrium can be characterized solely by aggregate
quantities and prices (e.g., Eaton and Kortum, 2002; Chaney, 2008; see Allen et al., 2024 for
uniqueness results for some of these models).” Second, we provide a tractable extension
of canonical quantitative trade models that allows firms to source inputs based on flexible
interactions between buyer and seller characteristics.

Our paper also connects with the literature on the relationship between trade and tech-
nology (e.g., Eaton and Kortum, 1999; Buera and Oberfield, 2020; Liu and Ma, 2021; Aghion
et al.,, 2021; Cai et al., 2022; Lind and Ramondo, 2023), which often uses patents to measure
technology diffusion. While most existing studies focus on how trade affects vertical tech-
nology (e.g., aggregate or sectoral productivity), we focus on horizontal technology choices.®
Motivated by this focus, we construct a new, theory-consistent, measure of technology sim-
ilarity for empirical and quantitative analyses. We provide evidence for the compatibility
mechanism and offer a structural interpretation of the evidence, complementing existing
studies emphasizing learning or other forms of technology diffusion.

Finally, recent literature has estimated the impacts of the trade conflict between the U.S.

7Other trade models in which firms interact with the entire distribution of firms include those based on the
assignment model, e.g., Costinot and Vogel (2010). Such models often imply efficient allocation, so welfare
theorems can be invoked to establish the existence and uniqueness of equilibrium. This approach does not apply
to our model with externalities.

8Lind and Ramondo (2023) study how trade affects the similarity of technologies among countries, modeling
similarity through the correlation in productivity draws. In our model, technology similarity is an outcome of
firms’ choices.



and China, focusing on the short-run effects (e.g., Amiti et al., 2019; Fajgelbaum et al., 2020;
Huang et al., 2023). Our finding suggests that an important part of the welfare losses will
appear as technological adjustments take effect. Our focus on the non-tariff aspects of trade
conflicts also relates to works on the interaction between trade and international relations,
e.g., see Kleinman et al. (2024), Bonadio et al. (2024), and Clayton et al. (2023).

2 Model

2.1 Environment.

There are N countries, denoted by d or o, and S sectors, denoted by i or j. When referring to
directional flows, we use (d, i) to denote the buying country-sector pair and (o, j) to denote
the selling country-sector pair.

In each country d, a representative household supplies L; units of labor, and a represen-
tative producer makes a non-tradable final good with the following production technology:

Qi = f[ | i [T a] )

where q{i ,(w) denotes the quantity of intermediate good w produced in country o sector j that
is used to produce the final good in d. The parameter # > 1 is the elasticity of substitution
between different varieties, and P{Z is the share of sector j in the final good. This final good is
used for domestic consumption and domestic firms’ technology adaptation.

In each country-sector pair (d,i), there is a continuum of intermediate-good firms de-
noted by v,w € [0,1]. Each firm produces a differentiated variety using labor and inputs
purchased from other intermediate-good firms. We assume that intermediate-good firms
engage in monopolistic competition when selling to final-good producers—thereby earn-
ing positive profits—and charge marginal production costs when selling to downstream
intermediate-good firms. Before production, intermediate-good firms choose a horizontal
technology, balancing the desire to use the technology they know best (their endowed tech-
nology) and the need to be compatible with key suppliers.

Let T be a metric space containing all technologies—such as a circle, the real line, or a
finite-dimensional Euclidean space.’ Each firm v is endowed with a technology #(v) € T.
Given 0(v), the firm selects a production technology 6(v) € T. Deviating from §(v) incurs
adaptation costs, yet may yield benefits by enhancing compatibility with certain suppliers.
After choosing 6(v), the firm randomly samples a set of suppliers and selects those that offer
the lowest compatibility-adjusted input cost. Firms then produce and sell the output to other

9For some of the theoretical characterizations and later quantitative analysis, we restrict to the real line. We
discuss the implications of focusing on the real line in Section 2.4.



firms and final-good producers.

Technologies in our model have broad interpretations. They might represent distinct
technical ecosystems—such as Android versus iOS for smartphones—or capture differences
in marketing strategies, business networks, or political alignments among firms and coun-
tries. They may also embody product designs that rely on different scientific and engineer-
ing disciplines. For example, makers of internal combustion engine cars and their suppliers
tend to rely predominantly on mechanical engineering, whereas makers of electric vehicles
and their suppliers draw more on advances in chemistry and electronics. Although our the-
oretical framework does not require a precise definition of technology, our empirical and
quantitative analyses operationalize technology as the knowledge embedded in patent texts,
using patent similarity measures to assess technological relationships between countries.

In the remainder of this section, we first describe firms” production and input-sourcing
decisions, taking their chosen technology as given. We then describe how firms select their
technology and characterize the equilibrium for technology choice. Finally, we derive testable

implications of the model and discuss its welfare implications.

2.2 Production and Sourcing Decisions: Intermediate-Good Firms

Consider a firm v in country-sector (d, i) that has already chosen technology 6(v). This firm
can access a random set of production techniques, denoted by R(v). Each technique r € R(v)
is characterized by (i) a production efficiency A(v,r) and (ii) a set of potential suppliers
drawn independently and uniformly from firms in country-sector pair (o, j) for each o and j.
Denote the set of suppliers for technique r from (o, j) by Q) (v,7).

Under technique 7, the firm’s output is given by

y(w,) = A @) T (v n)]", with 9+ Fy =1,
j j
where [(v) is the labor hired by firm v, and m/(v, ) is the sector-j intermediate good. Since
there is no love-of-variety in input sourcing, suppliers of input j from around the world
engage in perfect competition and the cheapest one wins the order from firm v.

Denote the wage rate in d by w,. The factory-gate price of firm v under technique r is

p(v,1) = -l TT W), @

j

where ¢/ (v, ) is the minimum cost for input j among the suppliers available for technique r:
d(v,r) =min min &(v,w).
O we(vr)



& (v, w), the (compatibility-adjusted) cost of input j from supplier w € O (v, 7) is

Ej(v,w) = Téo p(w) - 1

~H(6(v),0(w)), (©)

where Té , is the iceberg trade cost, p(w) is the factory-gate price of supplier w, and z(v, w) is
an idiosyncratic match-specific efficiency draw. £(6(v),0(w)) is an increasing function of the
distance between 6(v) and 6(w), capturing technology compatibility: intermediate goods
perform better when the buyer and the suppliers use similar technologies.

Since firms sell their products to downstream firms at their marginal production cost,
their profits accrue solely from sales to final good producers. Firm v chooses among R(v) the
technique that maximizes these profits. Since firms charge a constant markup to final good
producers under monopolistic competition, profit maximization is equivalent to minimizing
the factory-gate price:

pv) = min p(v,r).

Because firms buy from and sell to each other simultaneously, the price distribution in

any (d, i) depends endogenously on those in all other country-sector pairs. To characterize

these distributions, we make the following assumption on the techniques available to firms.
Assumption 1. For any firm v in country-sector (d, i):

1. Forany a1 < ay € (0,+00), the number of production techniques with A(v,r) € (a1, az)
follows an independent Poisson distribution with mean (a1/ AL) ™ — (a/ AL) ™", with A > 1.

2. For any production technique r and each (o, j), suppliers in QL (v, r) are drawn independently
and uniformly from intermediate-good firms in country o sector j.
The match-specific efficiency draws of these suppliers, z(v, w), satisfy the following: for any
21 < 2z € (0, 400), the number of suppliers in Q{;(v,r) with z(v, w) € (z1,z2] follows an in-

¢

dependent Poisson with mean z, ° — z, ¢ where for integratability { € (max{max;; 77\, 1}, 7).

Assumption 1 specifies both the productivity draws for each technique and the match
quality draws for suppliers. The Poisson assumption, which follows Boehm and Oberfield
(2020), can be viewed as an extension to the more familiar Pareto assumption (Chaney, 2008;
Kortum, 1997).1° In Part 1, A; determines the efficiency level of available techniques in
(d,i)—higher A} implying more high-efficiency techniques, which means country d has an
advantage in i—while A governs the heterogeneity among these techniques.!! In Part 2, the

19Draws satisfying Part 1 of Assumption 1 can be generated as follows: take any x > 0, draw the number
of techniques with A(v,7) > x from a Poisson distribution with mean (x/A!)~*; for each technique, draw its
efficiency independently from a Pareto distribution with position parameter Afi and tail parameter A. Based on
the thinning properties of Poisson, the limit of these process when x — 0 satisfies Part 1.

1 An intuitive way to see this is to consider the limit as a — oo, which reveals that Afi shapes the number of
available techniques exceeding any threshold a; and A governs how quickly that number decays with a;.



uniform sampling of suppliers in ol (v, r) implies that the technologies of potential suppliers
follow those of all firmsin (o, j). Parameter { then governs the heterogeneity of match quality
among these suppliers, similar to how A does for available techniques.

We now characterize the distribution of factory-gate prices of firms in (d, i) conditional
on the technology they choose:

Proposition 1. Under Assumption 1, p',(0), the factory-gate price of a firm in (d, i) that has chosen
technology 0, follows a Weibull (inverse Fréchet) distribution with c.d.f.

Fy(pi0) =1—exp (= [p/Cy(0)]"). @
Its location parameter C',(0) is determined as the solution to the following fixed point problem:

77

cite) = -l T1[E [ h@no0) “aod)] ®)
] 0

where ! is a sector-specific constant, and @{, is the probability measure that describes the distribution
of chosen technologies across firms in (o,j).'>

Proof. See Appendix A.1. O

To prove this result, we show that if supplier price distributions in each (o, j) are Weibull,
then the induced distribution of factory-gate prices for outputs is also Weibull. Because tech-
nology compatibility affects input sourcing, firms with different 6 have different production
cost distributions. We denote by C}(6) the location parameter of the cost distribution for
firms in (d,i) which have chosen technology 6. In equilibrium, each C’,(6) depends on all
{C{;(é) 0 e T}y:'%,jzl through the fixed-point relationship (5).

Equation (5) reveals the forces shaping the price distribution in (d, 7). Standard elements

in trade models with input-output linkages appear: (d,i)’s effective sectoral productivity
NS
0=1,j=1"

rameters {C}(0) : 0 € T}é\[:’i,jzl. The novel compatibility effect enters via #(6,0). In the

B!/ AL, country d’s wage w, iceberg transport costs { Té o) and the supplier price pa-
presence of match-specific efficiency draws, a firm with technology 6 may end up buying
from a supplier in any country o with any technology 8. Consequently, C’,(6) depends on the
integral over the entire domain of @),

Because of the compatibility incentive, firms’ sourcing decision is a function of their tech-

nology 6. We characterize the sourcing decision as a corollary of Proposition 1:

Corollary 1. For a firm in (d, i) with technology 0

. L odl ij . -1/A
129pecifically, & = (fooo I ...fooo]I[]_[]»[ml]% <« T - @/)\)]WT exp(fmJ)/\x_)‘_ldml...dedK) ,

which is finite provided that max{max;j7/A,1} < { < A. As long as this inequality is satisfied, the exact
value of A does not affect our quantitative exercises.



1. The expenditure share of the firm’s input j produced by firms in o with technology 0 is
[7],Ch(6)¢(0,0)] ¢ - d©}(9)
Lo [Thor s (0)] ¢

where d©),(§) denotes the measure of firms in (o, j) with technology 6 and

X}, (6,6)d0}(0) =

, (6)

A(©) = ([1Ch@)t(0, ) Fae)(®) 1~ %

2. The expenditure share of the firm’s input j produced by firms in country o (across all 8) is
[T A0(6)]
Lo [T s (0)] 7

1) = [ x),(6,8)d0](8) = ®)

Proof. See Appendix A.1. O

Equation (6) takes a similar form to the trade share in Eaton and Kortum (2002). The
numerator reflects the likelihood that suppliers in (0,j) with technology 6 are chosen by
a firm in d with technology 6; suppliers are more likely to be chosen if they offer lower
compatibility-adjusted costs (lower TéOC{;(é)t(G,@)) or if they are more numerous (larger
d@é(é)). The denominator aggregates over all sector-j suppliers globally that can be ac-
cessed by a firm in (d,i) with technology 6, where A{;(G) measures the competitiveness of
suppliers in (o, j). The integration in (7) reflects that a country-sector (o, j) is more compet-
itive as a source if it has more firms with low compatibility-adjusted costs. The second part
of the corollary then aggregates across all firms in (o, j) to derive the overall probability that
a firm in (d, i) with technology 6 sources input j from country o.

The model described above generalizes Caliendo and Parro (2015) to incorporate flexible
firm-level sourcing decisions. In particular, if we impose a single technology for all firms
and countries (i.e., make 6 exogenous and homogeneous), then C’,(6) defined in (5) collapses
to a scalar C',, A{;(G) defined in (7) also reduces to C}, and the trade shares XZI ,(0) no longer
depend on 6—just as in Caliendo and Parro (2015). Thus, our model preserves the flexibility
and tractability of canonical quantitative trade models while allowing for rich firm-level
sourcing decisions that take into account compatibility requirements.!?

Importantly, beyond technology compatibility, by letting 6 represent a firm’s attributes
and #(6,0) capture interactions among different firm types, the trade block of our model can,
in principle, accommodate any firm heterogeneity. This makes the framework applicable to

other settings where allowing sourcing patterns to depend on firm-level traits is crucial.

13Tractability stems from Poisson assumptions on A(v,r) and z(v,w). The assumption on A(v,r) ensures
p(v,r) in (2) is Weibull if all ¢/ (v, r) are Weibull; likewise, the assumption on z(v,w) ensures & (v, w) in (3) is
Weibull if p(w) is Weibull. The Weibull distributions for prices are useful as they can be summarized by a small
set of parameters (e.g., Cfi(é) in (4)) and deliver shares as in the standard Eaton and Kortum setup.

10



2.3 Production and Sourcing Decisions: Final-Good Firms

Final-good producers face constant monopolistic competitive markups -5 when purchas-
ing from intermediate-good producers. Facing these markups, they choose input from each
supplier to maximize their profits:

Pde—ZZ/ 1 Lg]P{J )]q{io(w)dw, )

where the factory-gate price p{, (w) follows the distribution described by (4), TdLg is the iceberg
trade cost for final users (superscript ‘U’), which may differ from the 7}, faced by intermedi-

ate firms, and P; is the price of the final good in d,

P, EH(Pé/p{i)P{i, with Pé = Z/ TdLo[]p]o w)]' M dw)
J

L
-

The sourcing decision of final-good producers differ from that of intermediate-good produc-
ers in two aspects. First, instead of relying on a single supplier per sector, final-good produc-
ers purchase from all suppliers because they benefit from love-of-variety. Second, final-good
producers are unaffected by technology compatibility. This latter assumption captures the
idea that consumers ultimately care more about the functionality of products than the un-
derlying technological details. It also aligns with our quantification strategy using patent
data.

We characterize the final-good producer’s sourcing decision in Corollary 2.
Corollary 2. For the final-good producer in country d, when purchasing goods from sector j:

1. The expenditure share allocated to goods produced by firms in country o with technology 0 is

[N s [T ch (@)~ o
7, (6)d®) (0 dﬂ— ©(0), 10
do( ) ( ) ZO/ [Tdo, ] —y ( ) ( )
where Al = ( / (CL(8))'~"de)(8)) (-, (1)

2. The expenditure share allocated to goods produced by firms in country o is

j
- [TdOA ]1 U

mh, = [ 7, (8)d0} () = L Cme (12)
o'l tdo!

Proof. See Appendix A.1. O

Here, /_\{; reflects the overall competitiveness of intermediate-good firms in (o, j) when
serving final-good producers. Because final-good producers do not consider technology
compatibility, (6, ) does not appear in A).
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2.4 Technology Choice

Upon entry, each firm in country-sector (d,i) draws an endowment technology 6 from an
exogenous distribution characterized by probability measure ©', on T, which we label as
the ex-ante technology distribution. The firm then chooses a production technology 6 and
adapts its production process accordingly before making sourcing decisions. Adapting to a
distant technology from the endowed one is costly but may increase profits through better
compatibility with efficient suppliers.

Recall that firms earn profits solely through sales to final-good producers. Let X(6) be
the expected sales to final-good producers by a firm in (d, i) choosing technology 6, where the
expectation is over possible draws of production techniques and suppliers. We specify the
firm’s technology adaptation cost as:

S 1.

K} (6;0) = ¢(6,0) - ﬁX;(Q), (13)
where %X}i(f)) represents the firm’s expected profits under a monopolistic markup, and
¢(0,0) denotes the fraction of profits spent on adapting to technology 8 # 6. The func-
tion ¢ (6, #) increases with the distance between 6 and 0, capturing the idea that more distant
technologies are costlier to adopt.'*

Firms choose 0 to maximize the expected net profits:

IT(6;0) = max[1 — ¢(6,6)] - ;x;(e). (14)
Under monopolistic competition in sales to final-good producers, whose demand is given
by (10), this is equivalent to:

max(1 — ¢(6,8)] x [Cy(0)]'". (15)

This formulation highlights the trade-off faced by a firm: choosing between a good technol-

ogy (i.e., the one with low C’,(6)) and a close one. Although by themselves technologies are

inherently horizontally differentiated, the ones shared by the most efficient suppliers end up

vertically better. In the presence of productivity differences between countries, this means
technologies adopted by leading countries tend to be vertically ‘better.”

Assuming that the solution to (15) can be described by a policy function, g’ () (for which

Proposition 2 provides the existence condition), we can construct the following mapping
between ex-ante technology distribution @, and the ex-post distribution:

@}(B) = /éeT I[g’(9) € B]d®,(8), for any measurable set B. (16)

14We model the adaptation cost as a share of expected profit. This could be micro-founded in a model of
bargaining, in which researchers bargain with the firm founder to split the profit. If the founder knows less
about more distant technologies, researchers can extract a larger share of the rents. Since we do not formally
introduce a research sector in the model, we treat adaptation costs as expenses.

12



We now define the equilibrium for technology choice, taking country wages as given.

Definition 1. Equilibrium for Technology Choice. Given the model primitives and countries’
wages {wy Y|, an equilibrium for technology choice consists of the policy functions that describe
firms’ technology choice, g, : T — T, and the cost functions C} : T — R for all (d, i), such that

(1) Given {C}, g',(9) solves problem (15) for all (d, i) and V8 € T except on a zero-measure set.

(2) Given {g',}, {C.} satisfies equation (5), where {@'} is given by (16).

The first condition ensures that firms” chosen technologies are optimal given the equilib-
rium distribution of factory-gate prices. The second condition guarantees that those choices,
when aggregated, are consistent with the cost distributions C¥.

Unlike in standard quantitative trade models, where similar conditions can be aggre-

5 in our

gated over firms and expressed solely in terms of aggregate prices and quantities,’'
setting, due to the bilateral nature of compatibility requirement, each firm’s choice depends
on the entire distribution of other firms’ choices. We develop a procedure to characterize the
conditions for the existence and uniqueness of equilibrium in such environments, which can
be adapted to other settings where interactions between firms’ decisions cannot be summa-
rized by aggregate sufficient statistics. Our characterization proceeds in three steps:

First, we formulate equilibrium conditions involving policy functions {g’,}—as in Defini-
tion 1—rather than involving distributions {®’,}. Doing so sidesteps the technical difficulties
of applying fixed-point theorems to spaces of probability measures. It also allows us to focus
on equilibria where technology choices vary smoothly with endowment technologies. '

Second, we stack the equilibrium objects to construct a joint mapping from their space
(i-e., the space of ({g’}, {Ci})) to itself. This differs from alternative methods viewing the
equilibrium as a nested fixed point system—e.g., mapping from the space of {g’} to itself,
nesting inside a fixed-point mapping for {C}} (see, e.g., Alvarez and Lucas, 2007 for an ex-
ample of the nested fixed point approach in trade models). Our approach avoids the often
challenging characterization of comparative statistics in the inner mapping necessary for es-
tablishing properties of the outer mapping. It shares the same spirit as Allen et al. (2024),
but here, the equilibrium objects are infinite-dimensional. We illustrate how to choose ap-
propriate norms and define spaces suitable for applying the Schauder fixed-point theorem
to establish equilibrium existence.

Third, to establish uniqueness, we derive the Fréchet derivatives of the constructed joint

mapping defined on functional space. We then determine the conditions under which the

15For instance, in Caliendo and Parro (2015), the first condition reduces to a system of equations for production
costs; in Chaney (2008), firms’ export decisions depend on the entire distribution of firm choices, which can be
analytically aggregated into price indexes.

160ur characterization focuses on equilibria with policy functions that are bounded, continuously differen-
tiable, and have Lipschitz-continuous first derivatives.
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Jacobian matrix of these Fréchet derivatives has a row sum norm bounded by a constant
below 1, which allows us to apply the contraction mapping theorem. The procedure for
deriving and bounding these derivatives is broadly applicable to other models featuring
similar interdependencies among firm choices.

Our procedure works for any generic metric space T. To simplify the algebra, however,
we impose the following assumption:

Assumption 2. 1. The space of technology is the real line, i.e., T = R.

2. The costs of technological incompatibility and adaptation are given by, respectively,

£6,6) = exp(%f(Q —6)2) and ¢(6,8) = 1 — exp(—%gﬁ(e_ —0)2), withf, ¢ > 0.

The first part of Assumption 2 takes a one-dimensional representation of the technology
space. The second part states that both the compatibility and adaptation costs increase in the
technological distance (6 — 0)? with constant elasticities, /2 and ¢ /2.

There are two aspects to the assumption T = IR: dimensionality and geometry. Re-
garding dimensionality, our theoretical results generalize to T = R” for a finite n.” In an
n > 1 setting, any technology can be viewed as a combination of different characteristics,
with each dimension representing one characteristic. We focus on T = IR because it suffices
in conveying the intuition while substantially reducing computational burden in quantifica-
tion. We discuss additional implications of this assumption on the calibration outcomes and
quantitative results in Section 4.

Regarding geometry, the technology space does not have to be a line—one could use a
circle, a ball, or other higher-dimensional manifolds. Different shape assumptions matter
for firm choices.'® Given the lack of evidence supporting one versus another, we choose a
linear representation because it allows Gaussian distributions, which, as shown later, yield
tractable solutions in our quantitative exercise.

Under Assumptions 1 and 2, we establish the following results on existence and unique-
ness of the technology choice equilibrium.

Proposition 2. Suppose wages {w,} are given.

1. Let {®} have bounded support within [—M, M] with density functions {g4}. If {f < 1/ M?,
then there exists an equilibrium with firms’ technology choice {g', } being continuously differen-
tiable functions. In this equilibrium, the choice of firms from (d, i) with endowment technology

7For T = R”", the cost functions in part (2) of Assumption 2 take a quadratic form in the exponent, e.g.,
t(6,0) = exp( % (6 —8) -F-(0—0)), where x' is the transpose of a vector x and f here is a positive definite matrix.

18For example, on a line, when a firm moves left, it moves closer to firms on its left while moving away from
those on its right. In contrast, on a circle, firms moving in opposite directions eventually meet.
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6 is characterized by the following first-order condition, which has a unique solution:

g4(0) = (1_wf)é+wi>:l_¢;m/Xéo(g;(é),é)g{;(é)d@f;(é), vl e [-M, M], (17)
7,0

i — (=) (—o"L)E
where w' = G-D0—71713 < 1.

2. Inaddition, iff < 5tz and ¢ > ¢ for aconstant ¢ > O determined by parameters ({, t,17, M, )
as detailed in the proof, then the equilibrium satisfying the above conditions is unique.

Proof. See Appendix A.2. O

For an equilibrium with continuous policy functions to exist, firms” technology choices
should not be overly sensitive to their own endowment technologies, which is ensured if
{EM? < 1. Here, M? sets a limit on the variance of potential supplier technologies, which
determines how much firms can improve compatibility through technology choice.'” f gov-
erns how fast production costs rise with technological distance, and ( is the trade elasticity
shaping how price advantages translate to profits. Together, these three parameters bound
the sensitivity of firms’” technology choice to their endowments.

The first order condition shows that firms balance staying close to their endowment 8
(weighted by 1 — w') against aligning with suppliers” average technology (weighted by w!
and the importance of suppliers % X{i ,(84(9),0)).

The equilibrium for technology choice is not generically unique. In particular, in the limit
as ¢ — 0 or f — oo, the incentive for compatibility outweighs the cost of adaptation, leading
all firms to coordinate on the same location—and any such location can be an equilibrium.
To establish uniqueness, we derive the conditions under which the joint mapping described
earlier is a contraction. In the condition f < ﬁ, 2M enters as the upper bound of the dis-
tance between a firm’s technology and the expenditure-weighted average technology of its
suppliers. Intuitively, f - 2M determines the scope for compatibility benefits. If these benefits
are not too large, and if the cost of technology adaptation ¢ is not too small, then firms’ tech-
nology would not be overly sensitive to other firms’ choices, thereby ensuring uniqueness.

This intuition behind the bound for f means that even if M is arbitrarily large, as long
as firms” expenditure shares on distant suppliers are not too large, uniqueness can be en-
sured without f — 0. More generally, Proposition 2 requires bounded technological space
because we allow for arbitrary endowment distributions. This assumption can be relaxed by
restricting the endowment distribution to particular shapes. Indeed, under our calibration,

the equilibrium under Normal distributions on ex-ante distributions exists and is unique.

9By Popoviciu’s inequality on variances, var(f) < M? for any distribution of 6 over [—~M, M]. Larger vari-
ance means greater heterogeneity in supplier technologies, implying larger room for firms to improve supplier
compatibility, hence leading to more sensitive technology choice with respect to endowed technology.
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2.5 General Equilibrium

We now embed firms’ technology choice equilibrium into a general equilibrium. For a firm
in (o, ) using technology 8, let M) () denote its expected sales to downstream firms. Market

clearing in intermediate goods, stated in value of goods, reads:*’
j i agi L\ i (0 4O
=T X [ [Mi0) + (1 )X4(0)] Xl (0,0)450), (18)
d i

where M/ (6) is the expected sales to other firms by a firm in (d, i) with technology 6, X/ (6)
is that firm’s expected sales to final producers. The sum [M}(6) + (1 — 1)Xi (0)] equals the
expected production cost of that firm (given its L markup to final producers) 7 is that
firm’s expenditure share on input from sector j, and X4 0(9, 0) is its likelihood of purchasing
from a firm in (o, j) with technology 8.

The expected sales of a firm with technology 8 to final-good producers, X) (0), satisfy

X; (6 Z:dJann@(> (19)
Here, P;Q is the final good demand from household consumption and adaptation costs:

PaQu = i+ 1 [ Kilgi():0)d0}@) 20)

with technology adaptation costs K, (6; 6) defined in (13), and g’, the policy function for tech-
nology choice as part of the technology choice equilibrium (Definition 1).
Household income consists of wages and the net profits of domestic firms:

I, = wyLy + Z / 1T (¢,(8); §)dO),(8), 1)

where net profits IT,(6; 0) are defined in (14), and wages are determined by the labor market

clearing condition, stated in expenditure:
1. ,
wila = o [IM0) + (1= )X} (0140} (0). @)

Definition 2. Competitive Equilibrium. Given parameters on geography {Téo,ng ,Lg}, pref-
erence {0, 1}, production technology {l, 'L, Ai, A,{}, and the ex-ante technology distribution
(O]}, a competitive equilibrium is defined as (i) wages, price index and income {wgy, Py, 1;}, (ii)
ex-post technology distribution {@JO} (iii) sales characterized by {Xﬂ(@),Mﬂ(G)}, and (iv) policy
function for technology choice {g',(8)} and production cost function {C',(6)}, such that

i. Given wages {wq}, {g'(9), Ci(0)} constitute a technology choice equilibrium defined in Defi-

200r, in the integral form: for any set B,

My(@)a0y0) = [ 22/7 [M(0) + (1= )X} 0], (0,014} ()| 404 (2.

JéeB
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nition 1, and {@{,} is consistent with equation (16).
ii. Goods and labor markets clear, i.e., (20), (21), (22) hold by d, and (18) and (19) hold by (o, j,0).
Having defined the general equilibrium, we use special cases to analytically examine the
interaction between technology choice and trade, and the resulting welfare implications.
2.6 Special Cases: Interaction between Technology Choice and Trade

Throughout this subsection, we assume that each country-sector pair (d, i) has a degenerate
ex-ante technology distribution with a unit mass at 6. We focus on the equilibrium for tech-
nology choice (i.e., taking wages as given) that is symmetric, meaning that all firms from a
country-sector pair (d, i) with the same endowment technology choose the same technology.

Proposition 3. In the equilibrium of technology choice under degenerate endowment distributions:

1. The technology chosen by a firm in (d, i) is a weighted average between the firm'’s endowment
technology 0', and the technologies chosen by its suppliers {6, }:

. L. . ij L
0 = (1— )y + @' Y 2 0 (23)
o -
(=) (=) _ij __ exp[={(InT, +InCot 3E0—0)1)] )
where W' = (7_1)(1_7&)”4_7,51;151 Xio = T ewlg(nt, +ind] %f(e;’,—si/)z)] is the share of sector

i+
j input spent on country o by intermediate-good firms in (d, i).

2. Let C = (C},C3,...,CR)) denote the location parameters of factory-gate price distributions
(i.e., the degenerate special case of the location parameters defined in (5)). Then between two

equilibria with different trade costs and technology choices:

dinC = G -dInT + G - d6,

where df = (dO},dG%,..., dGZS\,) anddInt = (dIn Tlll,dln T%l,...,dln Tllz,dln lez,...,dln Tf]N).

GC is an NS x N2S matrix that depends on the following sufficient statistics: {, the input-

output parameters, and trade shares.

Gl isan NS x NS matrix that depends, additionally, on F and the expenditure-share-weighted

average differences in {6} across country-sectors.

3. In response to changes in trade costs {d In Téo}, firms” technology choice changes according to:
dé = Gg -dInT,
where Gy is a matrix that depends on 1, ¢, and all the sufficient statistics stated in part 2.

Proof. See Appendix A.3. The proof also presents these coefficient matrices explicitly. ]
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Equation (23) is a special case of (17). The difference here is that because firms within a
(d,1) are homogeneous, they have the same trade shares szjo-

Part 2 of the proposition shows how changes in trade costs and technology distances in-
fluence the production cost distributions. Intuitively, firms” production costs increase either
if their import costs increase (captured by d InT) or if they become more distant to suppliers
in the technological space (captured by d@). Both have direct and indirect effects, captured
by input expenditure shares and trade shares. Both effects are larger if inputs are less substi-
tutable across suppliers—hence the dependence of Gj and G{ on intermediate-good trade
elasticity ¢. The marginal effect of technological change further depends on f—how fast in-
compatibility costs rise with technology distance—and existing technology configurations in
the economy.

Part 3 shows that the effect of trade costs on 6 can be summarized by a coefficient matrix

g, which, in addition to the set of sufficient statistics stated in Part 2, also depends on the
final demand elasticity 77 and adaptation cost parameter ¢. Firms’ technology choice balance
the benefits of reducing production costs and the costs of adaptation. The benefits, according
to Part 2, depend on all the sufficient statistics stated there and #, which determines how
production costs translate into profits, whereas the costs depend crucially on ¢.

Appendix A.3 presents all the coefficient matrices explicitly. To sharpen the intuition, we
next consider a ‘small’ country-sector (d, i), whose technology choice does not affect the rest
of countries and sectors.

Proposition 4. Consider a country-sector (d, i) that is small in the sense that its input and output
account for a negligible share of all countries and sectors, including sectors in country d. Following
an x % increase in the cost of (d, i) importing from (o, ]):

1. The squared distance between 6, and 9£ changes by:
ij i 9] ij 91’ _ Gj
L'y Xl Hi‘/>< "
1_t€w Z] o”)/]XdD/HQ l9d] || 0] 19]

>0 by firms’ second-order condition

All6} — )] = —

where w' and XZD are defined in Proposition 3, and 193 =YX a{m(?] is the weighted average
technology of sector-j suppliers to (d, ).

2. |16} — GZ,H increases relative to the expenditure-share weighted distance between 0’ and Gi,

across o' =1, ..., N. Formally,
cwor gl - 8l
1= K Sy 7 R 16— 0 |

Proof. See Appendix A 4. O

All6} — 6| = Yz All6h — 6] = x>0, (24)
O/
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Part 1 of the proposition characterizes the impact of an increase in Té , on |6} — 0) Il. As
Té , increases, firms in (d, i) increase their dependence on other suppliers, which increases
the weight of these suppliers” average technology in 6,. Whether this change increases or
decreases [|6/, — 0) | depends on the sign of the ratio (6, — 0) )/ (6] 19 ) which in turn de-
pends on the positions of ¢ and 19] relative to 9] If 0, and 19] lie on the same side of 9{,,
then (d,1) firms’ putting more weights on other suppliers reduces their incentive to shift to
0, increasing ||6; — 0 |; conversely, |6}, — 0 || may shrink.

Despite this ambiguity, Part 2 establishes that ||6; — 9£|| always increases relative to the
expenditure-share-weighted average distance between 6/, and the technologies of all suppli-
ers. The increase in the relative distance is larger if adaptation is less Costly (smaller ¢, which
enters via w'), if (d, i) relies more heavily on (o, ) for 1nputs (large 7%} ), or if 0) is farther
from the average technology of suppliers (larger HGé 87||). We will leverage this intuition
to discipline the model for quantification.

Thus far, we have focused on how changes in trade costs influence technology choices. As
discussed previously, firms” endowment technology also affects their choice, which in turn
affects trade. To illustrate this mechanism, we consider a change in the endowed technology

of a zero-measure set of firms from the rest of the firms in (d, 7).

Proposition 5. Suppose all firms in (d, i) share the same endowment technology 0', except for a zero
(v

i
measure set v endowed with 8(v). If 0(v) moves closer to 9] relative to 6/ o, then

1. Firm v chooses a technology closer to 0) relative to 9{7,, namely, ||0%(v) — 0) | — 6% (v) — 9£, [

decreases.

2. Firm v is more likely to source intermediate goods from (o, ) relative to (0’ ]) the change in
the likelihood of sourcing from (o, j) relative to from (o', ) satisfies: Alog (x7,(v)/x do,( v)) =

—1F % & (l16 ) = 0bl = 116}, (v) — 011
Proof. See Appendix A.5. O

The proposition indicates that as a firm’s endowed technology moves toward 9{;, so does
its chosen technology. This, in turn, makes the firm more likely to source from (o, ). The
response of sourcing patterns to the technology distance between trade partners is governed
by f as well as the conventional trade elasticity {. Conditioning on ¢, this response identifies
f, an intuition we will use in quantification to pin down £.

2.7 Special Cases: The Welfare Implications of Technology Choice

In our model, firms choose technology to maximize their own profits, but their choices im-

pact the profits of downstream firms, too. Such externalities propagate through input-output
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and trade linkages, leading to potential inefficiencies. We illustrate these welfare implica-
tions using two special cases that separately highlight domestic and international spillovers.
Throughout this subsection, each country-sector pair (d,i) has a degenerate endowment
technology distribution.

Proposition 6. Consider a closed economy (hence dropping country subscripts) with multiple sectors

and each sector with an ex-ante endowment technology {0},

1. The marginal impact of increasing 6" on household real income (denoted by U = %) is given by

Aln(U : 3p(6" —67)> o
Xéi): z[ eXp( Z(P( _ i) )_iz 91—91)—152’7/1/(91—9] }—fZPWﬂ 1_6]
7 —Lip'exp (— 30" — 0)?) j j#i
income effect sector-i price other sector prices

where ¥ = Y, Q"™ and Q" is the (i, m)-th element of (Isxs — T) ™1, with T = /¥,

2. Suppose that all sectors have the same weight in final-good consumption and a symmetric input-
output structure, ie., foralli # j # i, o' = p/, v = o and 1 = 4 = 4. In
equilibrium, ||0' — 8'|| is too small compared to the social planner’s solution. In other words,

firms under-invest in technology adaptation.

Proof. See Appendix A.6. O

Part 1 illustrates the mechanisms through which A9’ affects welfare. Without loss of gen-
erality, suppose that in industry i, firms shift to the left from their endowed technology, i.e.,
0" < @', presumably because they would like to use inputs from other sectors with technolo-
gies further to the left. A marginal increase in 6 from the equilibrium choice creates three
effects. First, it saves adaptation costs, which can be used by households for consumption
(first term). Second, it causes a change in the price of sector i (second term), in which 4/
captures the general-equilibrium effect of the distance to sector-j’s technology /. Finally, as
0’ shifts, other sectors using sector-i output as their input may benefit or lose depending on
whether their distance to 6" increases or decreases. This effect is stronger if the benefit of
technology compatibility is larger (larger f) or if the linkage is stronger (larger 4/%).

Contrasting this with firms’ first-order condition that shapes their technology choice:

[17 0~ 9’—f27” ‘—0)] =0, (25)

_. —_—
adaptation costs

production cost

we can see that, compared to the social effects of adaptation, individual firms (i) weigh the
income effect differently (because firms’ profits are only a share of household income), and
(ii) weigh the sector i price effect differently (7" instead of 4/ because they do not take
general equilibrium into account). Moreover, individual firms do not internalize how their
technology choice benefits downstream users (the third term in household welfare).
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Because of these externalities, the decentralized equilibrium typically fails to maximize
household welfare. Without further restrictions, the net effect of moving 6’ in any direction
is ambiguous—when firms move closer to some suppliers, they also move away from others.
The second part of the proposition shows that under symmetric input-output structures, the
positive externality dominates, and firms always under-invest in adaptation and stay too
close to their endowed technology.?!

We next consider the international spillovers of technology choice.

Proposition 7. Consider an open economy with one sector (hence dropping sector superscripts) with
roundabout production and two symmetric countries, country 1 and country 2. Assume, without loss
of generality, that in equilibrium 6, < 1. Then, the effect of increasing 0, from its equilibrium level
(moving it closer to 61) on welfare is:

|
1
|
<
—
o)
N
|
e
N
N~—
+
—

T X(Gl — 92) > 0,

where ¥ =

12 is each country’s expenditure share on foreign intermediate goods.
(Texp(jt(ez—el)z))*5+l

Proof. See Appendix A.7. O

As in the closed-economy setting, firms’ private incentive for technology adaptation does
not fully internalize the broader benefits of compatibility, which here extends to the foreign
country. Starting from the decentralized equilibrium, moving 6, closer to 6; lowers the pro-
duction costs of both countries due to stronger compatibility, as countries use each other’s
output as input. Beyond this direct effect, lower production costs in country 1 benefit pro-
ducers in country 2, and vice versa. As a result, both countries benefit from such a move.
Because firms do not internalize the full extent of these benefits, they under-invest in adapt-
ing toward foreign technologies from the perspective of both foreign and domestic welfare.

This mechanism has implications for the impact of trade policies. If trade liberalization
leads to technology convergence between the two countries, that convergence amplifies the
resulting welfare gains. Conversely, if a trade conflict causes countries” technologies to di-
verge, that divergence amplifies the welfare losses.

This last result might seem surprising given the intuition that, when facing adverse

shocks, agents” endogenous substitutions often mitigate the damage of the shock for them.

21We assume that intermediate-good firms sell to downstream producers under perfect competition. We con-
jecture that even under alternative arrangements (e.g., fixed markups or bilateral bargaining), technology choices
would remain inefficient. This inefficiency stems from the ex-ante nature of the technology decision, which cre-
ates a hold-up problem during downstream transactions. Thus, unless firms can fully extract the rents from the
gains of improved compatibility or offer ex-ante contracts governing both technology choice and sales, they will
not fully internalize the externalities.
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However, in our model, externalities lead to an inefficient initial equilibrium, where there is
a first-order gap between social and private benefits of technology adaptation. In the pres-
ence of this gap, endogenous technological divergence leads to social losses. As a result, it

exacerbates, rather than mitigates, the costs of trade conflicts.

3 Evidence

We now turn to the data, with two goals in mind. First, we test a key premise of our model,
that compatibility with suppliers” technologies increases the likelihood of sourcing from
those suppliers. We investigate this premise using firm-level Chinese customs data. Sec-
ond, we examine the model’s implication that declines in tariffs make importer and exporter
technologies more similar. To test this, we exploit time-series changes in tariffs that affect
certain MFN-bound exporting countries but not others. We leverage these two estimates to
discipline the model for quantitative exercises.

3.1 Measuring Technology Similarity Using Patent Texts

Both of our empirical exercises require a measure of compatibility between technology pairs.
In the model, technologies are compatible if they are close to each other in the technology
space. We use a proxy for this by constructing similarity measures from patent texts. Patent
texts offer two advantages for our purpose. First, patents are embodiments of new technolo-
gies by design, and their texts are intended to accurately summarize the technical features of
inventions. Second, patent data are available globally, facilitating comprehensive measure-
ment across countries and sectors.

Measure Construction. We use the 2023 Fall release of PATSTAT Global, a database main-
tained by the European Patent Office (EPO) that covers close to the universe of world patents.
To ensure consistency in language processing, we focus on patents with English abstracts. To
avoid double counting inventions patented in multiple offices (e.g. European, U.S. etc.), we
keep only one patent per patent family. This yields around 45 million patent abstracts.??

We process these English abstracts using a leading large language model developed by
Alibaba ('gte-base-en-v1.5"), which transforms each paragraph into a 768-dimensional nu-

merical vector—a process called ‘text embedding.’””® The embedding of a paragraph sum-

22Because the EPO prioritizes abstracts in English when sourcing the data, approximately 90% of all abstracts
in PATSTAT are in English. Our final sample keeps a patent family as long as one of the patents in the family is
in English, so the coverage is even higher.

23See https://huggingface.co/Alibaba-NLP/gte-base-en-vi.5 for model descriptions. The model bal-
ances efficiency and quality. Deployed on a desktop GeForce RTX 4090 GPU, it produces the embeddings for
45 million patents in 2 days. In terms of quality, as of August 2024, it ranks 36 of 438 on the Massive Text
Embedding Benchmark Leaderboard (Muennighoff et al., 2023). For comparison, the default model of SBERT
(“all-mpnet-base-v2’) ranks 282, and OpenAl’s latest embedding model (‘text-embedding-3-large-256") ranks 65.
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marizes its meaning as a point in a 768-dimensional space. In the context of patents, we can
view this space as representing all possible combination of technical ingredients and insights
from different scientific disciplines to achieve a function. Closer points in the space represent
patents that are more similar to each other.

To measure similarity between firms and countries, we take the average embedding of
all patents produced by a given unit (firm or country) and compute the cosine similarity
between units.”* For example, let ¢,+ be the average embedding of all patents invented in
firm w in period t, and let ¢, be the average embedding of patents invented in country o.
The similarity between firm w and country o in period ¢ is defined as:

Cwt * Cot
12t - [1Ceotll”

where the numerator is the inner product of the two vectors, and the denominator is the

Similarity ,, =

product of their norms. We construct analogous measures at other levels of aggregation,
such as between country-sector pairs, and between firm and country-sector pairs. We assign
patents to sectors and products (HS-6) using the crosswalks between the international patent
classification and standard industry and product classifications by Lybbert and Zolas (2014).

Validation and Summary Statistics. In Appendix B.2, we provide examples to demon-
strate that the embedding-based similarities capture technological compatibility between
firms along the production chain. We also show that our measures correlate with plausi-
ble predictors of technology closeness. In particular, patents within the same class are more
similar than those in different classes, sectors with stronger input-output linkages exhibit
greater similarity, and geographically proximate countries also have more similar patents.
These patterns suggest that the embeddings indeed capture meaningful variations in tech-
nology proximity.

Our empirical analyses use measures at three different levels. In Section 3.2, we examine
whether firms are more likely to import from countries with technologies similar to their
own. To do this, we compute technology similarity between Chinese firms (denoted w)
and either foreign countries (Similarity ) or foreign country-sector pairs (Similarity ;). In
Section 3.3, we investigate the causal effect of trade barriers on technology proximity by ex-
ploiting changes in HS-6-level MEN tariffs. We tailor our empirical designs to the variations
in such tariffs, measuring similarity at the level of the importing country, exporting country,
HS-6 product, and time (Similarity ;, 15 ;)-

Both exercises use data from 2000-2014, which we group into five three-year intervals.
We aggregate countries in the World Input-Output Tables (WIOT) into 29 regions based on
geographic and political proximity; see Table B.1 for the full list of regions. (In the rest of the

24 An alternative would be to calculate pairwise similarity across individual patents and then aggregate. Given
the large number of patents, this alternative is computationally infeasible; we verify on a smaller sample that the
two methods produce strongly correlated metrics.
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Table 1: Summary Statistics: Similarity between Firms

Mean Std. Dev. Min Max Obs.

Similarity 0.564 0.090 0.071 0965 5,147,016
Similaritywojt 0.506 0.110 -0.011 0978 13,781,232

Similarity;, pe, 0.694 0.112 0.171 0977 5,720,642

Notes: Similarity,, is the cosine similarity between the text embeddings of patents in period ¢ from a Chinese firm w and
those from a foreign region o. Similarity,,,;, and Similarity,, ;5 , are defined analogously. Similarity ,,,;, compares firm w with

a region-sector pair (o, j); Similarity,, ;s , compares country d with patents in a specific HS-6 category in region 0. Regions
are classified as in Table B.1. Sectors are classified at the two-digit level of the International Standard Industrial Classification.

paper, we use ‘regions” and ‘countries” interchangeably.) Table 1 reports summary statistics
for the key similarity measures used in our analysis.

Citation as an Alternative Measure. An often-used measure for technology similarity is
patent citations. Because citation-based measures are also frequently associated with knowl-
edge diffusion between the cited and citing patents (Jaffe et al., 1993; Liu and Ma, 2021),
we have chosen to use the text-based measure as our preferred approach. Nevertheless, in
Appendix B.2, we show that our text-based measure correlates with bilateral citations. More-
over, all empirical results hold when we use citations to measure technology proximity.

Relationship between Technology and Bilateral Trade. Figure 1 takes a first look at
the relationship between bilateral trade and technology similarity using country-sector-level
data. The vertical axis shows log exports from sector j of country o to sector i of country
d. The horizontal axis plots the text-based technology similarity between (d,i) and (o, j).
Included in the controls are bilateral distance metrics and income differences between d and
0, and fixed effects by d-i, 0-j, and i-j.

The figure shows that buyers source more from sellers with similar technologies. This
pattern contrasts with the pure Ricardian view of trade—where exogenous technology dif-
ferences drive trade and greater differences lead to more trade—but is consistent with our
model. In the rest of this section, we first analyze this correlation at the firm level to isolate
specific mechanisms and then examine how technology proximity responds to exogenous
shocks in bilateral tariffs. We briefly describe the additional datasets used in each exercise;
further details on data preparation are provided in Appendix B.1.

3.2 Firm-Level Correlation

Proposition 5 suggests that within a country-sector (d, i), firms whose endowed technology

is closer to a foreign country o tend to choose similar technologies to those of 0 and import
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Figure 1: Technology Proximity and Trade

Notes: The figure is a binned scatter plot of log exports from country o sector j to country d sector i against the technology sim-
ilarity between (d, i) and (o, j). Technology proximity is measured as the cosine similarity of the average textual embeddings
of patent abstracts between (d, i) and (o, ). Trade data is from the World Input-Output Database (WIOD). The plot controls for
d-i, 0-j, and i-j fixed effects, as well as distance metrics (geographic, language, colonial ties) and income differences between o
and d. The regression coefficient is 1.9 (s.e. 0.2 clustered by country pair).

from o. This leads to a firm-level correlation between imports and technology proximity.”’

Data. We use data on manufacturing firms from the Annual Survey of Industrial En-
terprises (ASIE) of China’s National Bureau of Statistics (NBS). This survey covers all state-
owned firms and non-state firms with sales above 5 million RMB (approximately $600,000)
before year 2011 and with sales above 20 million RMB after 2011. We match these firms
to PATSTAT Global to retrieve their patent families and then use the abstracts to construct
Similarity,,, and Similarity,,;,. Our final sample contains all manufacturing firms with
patents, forming an unbalanced panel that grows from 57,465 firms in the first period (2000-2002)
to 102,153 in the last period (2012-2014). We match these firms to Chinese Customs Data
(available to us over 2000-2014), with which we construct an indicator for whether firm w
imported from region o in period t.

Specification. We estimate the following regression:
I[Import,,, > 0] = B Similarity,,, + B2Xwot + FEwt + FEwo + FEot + €wot, (26)

where I[Import,, > 0] is an indicator for whether firm w imports from o in period ¢ and

wot

250ur model is static, so firms’ endowed technologies are permanent. In the empirical specification, we control
for firm-region fixed effects to absorb the permanent component of firm-country connections, exploiting only
the variations from the over-time shifts in technology endowments. If any, the empirical correlation between
technology proximity and imports becomes stronger if firm-region fixed effects are excluded.
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Table 2: Firm-Level Correlation between Trade and Technology Choice

I{Import,,, > 0]

1 () 3) 4)
Similarity ., 0.017*** 0.017%** 0.021%** 0.022%**

(0.005) (0.005) (0.005) (0.005)
FE w-t Yes Yes Yes Yes
FE w-o Yes Yes Yes Yes
FE o-t Yes Yes Yes Yes
Xi(w) ot Yes
FE p(w)-i(w)-o-t Yes Yes
Exclude Foreign Firms Yes
Observations 3,326,764 3,326,764 3,262,280 2,431,940
R? 0.748 0.748 0.766 0.729

Notes: * p < 0.10, ** p < 0.05, ** p < 0.01. Standard errors are clustered by firm. i(w) and p(w) represent the
industry and province of firm w, respectively. Xj(,,; includes the applied tariffs of industry i’s inputs and outputs.
Industry i’s input tariff is defined by the average applied tariff on imports of all goods from world region o, weighted by
each input’s share in industry i’s production. Industries are classified at the three-digit level of China’s Industry Classification.

the key regressor is Similarity . We include the following controls: firm-time fixed effects
FE.+, which absorb time-varying firm characteristics that affect firms’ tendency to import
or use foreign technologies (e.g., productivity, openness to foreign ideas); firm-region fixed
effects FE,,, which capture time-invariant linkages between a specific firm and a region.
These fixed effects also alleviate the concern that our findings may reflect differences in firms’
English proficiency or the way they write patent applications. FE,; represents region-time
fixed effects, accounting for changes over time in region o. Lastly, X, includes additional
controls for other determinants of import and technology choices.

Main Results. Table 2 reports our findings. Column 1 shows that firms with technolo-
gies more similar to region o are more likely to import from 0. One may be concerned that
the correlation is driven by tariffs, which may be correlated with both trade and other un-
observed linkages between firms and foreign regions. However, controlling for input and
output tariffs in the firm’s industry barely changes the coefficient (Column 2).

One may also be concerned that the correlation reflects differences among firms from
different provinces or industries in China, which face different barriers when interacting
with foreign suppliers due to either their geographic locations or historical connections with
these countries. While the firm-country fixed effects absorb the time-invariant aspect of
such connections, they do not capture the time-varying aspect. In Column 3, our preferred
specification, we absorb all such variations by controlling for i(w)-o-p(w)-t fixed effects, in
which p(w) is the province of firm w and i(w) is the industry of w. If any, the coefficient
for Similarity,,, is larger. The estimate, 0.021, means that a one-standard-deviation rise in
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similarity with o is associated with a 0.19-percentage-point increase in the probability of im-
porting from o, or 4% of the sample mean.

Finally, foreign-owned firms might drive this result if they import from their parent com-
panies and adopt their parent’s technology. In Column 4, we exclude foreign affiliates and
joint ventures between foreign and Chinese firms. The sample shrinks by a third, but the es-
timate remains unchanged. Since our model applies to foreign affiliates as well as domestic
firms, in the rest of this subsection, we use the full sample of firms. All results are robust if
we exclude foreign firms and joint ventures.

Heterogeneity by Industry. The correlation documented in Table 2 is consistent with
our model’s premise that firms choose technology and suppliers jointly for compatibility
reasons. An alternative information-based explanation is that firms may discover foreign
suppliers and technologies through correlated sources. For example, the firm owner may
meet a contact from a region o, who bring the technologies as well as the suppliers of o.
Although we include a rich set of fixed effects, we cannot fully rule out such mechanisms.
To support our interpretation of the correlation, we provide auxiliary evidence by looking
into two implications of the model on how the correlation varies across industries.

First, if the correlation is indeed driven by a desire for compatible inputs, it should be
stronger in sector pairs with more intensive input-output linkages. To test this implication,
we use Similarity,, ., the similarity between firm w and region-sector (d, ), as the explana-
tory variable. As the outcome variable, we use an indicator for whether a firm w imports

goods in sector j from country o, denoted by I[Import_ ., > 0]. Column 1 of Table 3 reports

wojt
a baseline specification where we simply regress Similz;rityw ojt o0 I[Import,, ;, > 0]. Given
that the data have a j dimension, we are able to include as controls the interactions between
the fixed effects in specification (26) and j. The estimate is 0.02, similar to those in Table 2.
Column 2 adds the interaction between Similarity ,,;, and 7v;(.);, the input share of sector j
in firm w’s sector i(w). This interaction is sizable: when 7;(,); increases by 10 percentage
points, the correlation between similarity and importing increases by 0.0053—one quarter of
the average correlation.

Second, the importance of input compatibility can vary across industries. For instance,
electronics and telecommunications equipment often require stricter compatibility than ap-
parel. If our estimates indeed capture technology compatibility, we should see a stronger
correlation in industries where compatibility is more critical.

To test this hypothesis, we construct a measure of compatibility intensity using the full
text of U.S. patents in the Orbis Intellectual Property Database, which links patents to firms
worldwide. For each three-digit industry, we compute the fraction of patenting firms with
at least one patent containing in its text either the word ‘compatibility /compatible” or the
word ‘“inter-operability.” Treating patents with these key words as an indicator of technolo-
gies where compatibility is important, this fraction, which we denote as Compatibility; ),
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Table 3: Firm-Level Correlation: Mechanisms and Alternative Explanations

I[Import,,,; > 0]

) (2) ) 4)
Similarity 0.020**  0.017**  0.018***  0.015***
(0.004) (0.004) (0.004) (0.004)
Similarity . X Vi(w); 0.053* 0.056*
(0.029) (0.029)
Similarity,,;, x Compatibility; 0.083** 0.084**
(0.035) (0.035)
FE w-j-t Yes Yes Yes Yes
FE w-o0-j Yes Yes Yes Yes
FE o-j-t Yes Yes Yes Yes
Observations 8,656,925 8,570,998 8,572,704 8,570,998
R? 0.750 0.750 0.750 0.750

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered by firm. 7;(,); is the input share of sector j in firm
w’s sector i(w). Compatibility; ) measures the compatibility intensity of sector i(w).

captures how often firms in industry i require compatible technologies.?®

Column 3 of Table 3 adds the interaction between Compatibility; ) and Similarity,,;.
The coefficient on the interaction, 0.083, implies that a one-standard-deviation increase in
industry compatibility intensity (0.11) raises the correlation by 0.9 percentage points—about
8.9% of the mean correlation. In Column 4, we further include the interaction with the input-
output parameter, and the coefficients for both interactive terms remain similar. Together,
these results offer support for our hypothesis that compatibility along the input-output net-
work drives the correlation.

Extended Gravity. Another implication of our model is an ‘extended-gravity’-like effect
(Morales et al., 2019) in the relationship between technology similarity and trade: if region o’
has technology similar to o, then stronger similarity between firm w and o’ is associated with
a higher likelihood of w importing from o. Thus, if we regress whether w imports from o on
the technological similarity between w and a region o’ that shares similar technologies as o,
the resulting coefficient should be positive. This relationship can hold even after controlling
for Similarity ,, unless the similarity measure is perfectly accurate.

In Appendix B.4.2, we show that, indeed, the similarity between firm w and other regions
o/, which are technology neighbors of o, is strongly correlated with w importing from o.

One might suspect an information-based alternative explanation—perhaps firm w meets
a new contact, who introduces to w both the suppliers in o and the technologies of o’. While

such knowledgeable and helpful experts certainly exist, given the language and cultural

26Table B.5 reports this compatibility intensity measure by industry. Our results remain robust if we refine the
context in which these keywords appear in patent texts. See Appendix B.3 for details.
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barriers between countries, it is more likely than not that their knowledge domain extends
to country pairs that are linguistically and geographically close to each other. We therefore
tease out the influence of such experts by controlling for the technology similarity between
firm w and the linguistic and geographic neighbors of region 0. The coefficients for these
controls are small and statistically insignificant. More importantly, they do not diminish
the coefficient for the technology similarity between w and the technology neighbors of o.
This pattern further supports our interpretation that technology closeness, rather than purely
informational channels, drives the correlation between imports and technology similarity.

3.3 Tariff Shocks and Technology Similarity

The second part of our empirical analysis tests another key implication of our model: a
decline in bilateral tariffs between country pairs o0 and d increases technology similarity be-
tween o and d (relative to other country pairs).

Data. We construct a panel of bilateral technology similarity and tariffs at the level of
(d,0,HS6,t), covering 28 regions for both d and o (excluding ROW in Table B.1) and five
three-year intervals from 2000-2014. Tariff data come from the UN TRAINS database, which
records the ad valorem tariffs faced by each (0, HS6) product in destination d at time ¢. In
addition to these applied tariffs, we also collect most-favored-nation (MFN) tariffs. As de-
scribed previously, we measure technology similarity, Similarity ,, ;;5¢;, between patents in
country d and patents associated with HS6 products in country o at time .

Specification. We estimate the following regression:

Similarity ;, ys; = BN Tao,use: + FEqnset + FEonset + FEaoHse + €donse s (27)

where Ty, 156+ is the applied tariff imposed by importer d on an HS-6 product from o. To ad-
dress endogeneity in 74, 156 + (€.g., countries might lower tariffs on partners from whom they
seek to adopt foreign technologies), we follow Boehm et al. (2023) and instrument In 7, r756 +
with the interaction between (i) the change in MFN tariff rates on the product in d (In ngsz\é, ;)
and (ii) an indicator of whether this MFN rate applies to exporter o in period ¢. This design,
explained in detail in the appendix, exploits the changes in MEN tariffs that affect some of
an importer’s partners but not others. We exclude the largest exporter for each importer-
product pair to mitigate concerns that MEN tariffs are set with the major exporters in mind.
We include three sets of fixed effects to account for time-invariant and time-varying con-
founding factors. FE; ;s absorbs changes in the importer d’s similarity to all producers of
that HS-6 good in each period t. FE, ps¢: captures the average similarity of all importers
with a particular exporter-product pair (o, HS6) at time t. Finally, FE,, ys¢ absorbs any pair-
specific aspects of (d,0, HS6) that correlate with both tariffs and technology similarity.
Results. Table 4 reports the results. Columns 1 and 2 use the log of HS-6-level trade flow
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Table 4: Tariff Shocks and Technology Similarity

InTradeg, rrse ¢ Similaritydo, HS6,t
OLS v OLS v
1) () ®3) 4)
InTEN -0.956*+* -0.007*+*
. (0.098) (0.001)
In Ty heet -1.379%+ -0.009***
(0.141) (0.001)
FE d-0-HS6 Yes Yes Yes Yes
FE 0-HS6-t Yes Yes Yes Yes
FE d-HS6-t Yes Yes Yes Yes
Observations 5,216,306 5,216,306 5,652,028 5,652,028
R2 0.900 0.900 0.994 0.994

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at the d-0-HS6 level. Columns 1 and 3 report
reduced-form regressions using OLS, while columns 2 and 4 report the second stage of 2SLS regressions using variations from
MEN tariffs to instrument for applied tariffs.

as the outcome variable and log tariffs as the explanatory variable. Column 1 estimates the
reduced-form specification, while Column 2 estimates the 25LS specification, instrumenting
In T;l?f f}lsig‘i with the IV constructed above. In both cases, the estimate is around 1, consistent
with the fixed-effect specification elasticity estimate in Boehm et al. (2023).

Columns 3 and 4 replace the outcome variable in the first two columns with technology
similarity. According to the 2SLS estimate (Column 4), doubling the applied tariff reduces
technology similarity by 0.009, or about 8% of the standard deviation of bilateral similar-
ity. Since tariffs are only one of many barriers to bilateral trade (such as informational and
cultural barriers), this estimate suggests that trade barriers can significantly influence tech-
nology choices.

In Appendix B.5, we show that using citations as a measure of bilateral similarity leads
to similar findings. We also show that the estimates remain robust if we focus on goods
primarily intended for intermediate use. This is reassuring given our model’s emphasis on
intermediate input and supplier compatibility.

Our findings here, and the appendix results using patent citations as a measure of simi-
larity, relates to a literature pioneered by Jaffe et al. (1993), which uses citation flows to track
technology diffusion. Most closely related, Aghion et al. (2021) show that after a French firm
begins exporting to a destination country, its patents receive more citations from that country.
We differ from Aghion et al. (2021) and other existing works in two aspects. First, we exploit
exogenous MFN tariff variation to isolate the causal effect of trade costs on bilateral patent
similarity. We provide evidence on heterogeneous effects and extended-gravity results to
support technology compatibility as one of the mechanisms. Second, our model interprets
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these findings through the lens of horizontal technology choice in production networks, com-

plementing existing works that focus on other channels of technological diffusion.

4 Quantification

We use the model to quantify how trade influences firms’ technology choices and how these
choices affect welfare. We begin by outlining the functional-form assumptions and approxi-
mations that enable closed-form solutions for firms’ technology choice. We then discuss our

parametrization strategy, followed by counterfactual exercises.

4.1 Functional-Form Assumptions and Numerical Algorithm

In our model, firms directly interact with the distribution of heterogeneous firms rather than
indirectly through aggregate prices and quantities. Solving for the equilibrium thus requires
tracking the entire distribution of @/, across all (d, i). To maintain tractability, we assume:

Assumption 3. For each (d, i), the endowment technology distribution is Normal with a mean of i’
and a variance of (07)%. That is, © ~ N (i1}, (7)?).

Under this assumption and a quadratic approximation to the log of cl (0) (defined in (5))
around the mean ex-post technology in each (o, ), we derive closed-form expressions for

firms’ technology choices and the resulting ex-post technology distributions:
Proposition 8. Under Assumptions 3, up to a second-order approximation of In C(]; (0):

1. InCh(6) is given by the following function:
InCH(8) = K, , +mly (60— 1, )2, (28)
where coefficients {mi‘, ”{4,0' k];“s,o} can be solved as a function of primitives and wages {w, }.
2. Firms’ technology choice g{)() is characterized by
() = o) + B8, (29)

o .
S Dmy )m/*jn{qoand[y:

with w{; = 1
5¢+(n—1)m,

3+(n-1m,
3. Hence, the ex-post technology distribution @), is also Normal:
@) ~ N(;ﬂ;, (07)?), with y£ = o)+ ,Bjﬁ{, and o = Bl (30)

Proof. See Appendix C.1. O
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Proposition 8 expresses in closed-form the parameters governing production costs and
firms’ technology choices.”’” In particular, equation (28) shows that we can recover the func-
tion CJ(6) by solving for a small number of coefficients. Equation (29) is the policy func-
tion for technology choice, which circumvents the need to numerically solve the technology
choice problem (15). The linearity of the policy in 0, together with Normal ex-ante technolo-
gies, also implies Normally distributed ex-post technologies, whose means and variances
follow directly from the closed-form expressions in (30).

Building on this proposition, we devise a tractable algorithm to solve for the equilib-
rium. First, given wages {w, } and model fundamentals, solve for firms’ technology choices
{ glo (6)} and cost parameters {Cﬁ (0) }. This amounts to solving a contraction mapping prob-
lem for the coefficients in (28). Second, compute the sourcing decisions for both intermediate
firms { Xé ,(6,0)} and final-good producers {7{2 ,(0)}. Third, solve for industry aggregates,
{X{, (0)} and {M{,(Q) }, using equations (18) to (21). Finally, check the labor market clearing
condition (22). If it is satisfied, the equilibrium is found; if not, update {w, } and iterate from
the first step. Appendix C.2 provides details for this algorithm.

4.2 Calibration Procedure

We now describe how we calibrate the model parameter, targeting the 2014 world economy.

Parameters Calibrated Externally. We set the elasticity of substitution for final-good
producers 7 = 5, which implies a 20% markup for their purchase from intermediate firms.
We set the shape parameter for match-specific efficiency { = 4. This value means that the
trade elasticity for intermediate firms (conditional on technology) is 4.%°

We take labor endowments {L;} from the Penn World Table population data. We de-
rive production-function coefficients {p%,7",7'L} from the World Input-Output Database
(WIOD), matching sectoral consumption shares in final-good production (p’,) and sectoral
input shares (77 and 'L). All these values are taken over the average of 2012-2014.

Technology Distribution. We recover the (unobserved) ex-ante technology distributions,
{f1}, 7'}, along with other model primitives, in two steps. In the first step, we choose the
parameters governing the ex-post distributions, {y, '}, to match the similarities between
country-sector pairs and their variances as reflected in patent text embeddings. In the sec-
ond step, we calibrate the production and sourcing blocks of the model by treating firms’
technology as exogenously fixed at the calibrated ex-post distribution, exploiting the result

27Proposition 8 can be extended to allow the variance of the ex-ante technology distribution to vary not only
by sector but also by country (i.e., (_Té instead of &'); it can also be generalized to multi-dimensional 6 with
multivariate Gaussian ex-ante technology distributions. In practice, the one-dimensional setup is sufficient to
capture the key features of bilateral technology similarity data, as we show below.

28Gee equation (8). The unconditional trade elasticity may be larger than 4 due to endogenous technology. In
the calibrated model, we find that the unconditional trade elasticity is close to 4 for small changes in bilateral
trade costs.
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that, conditional on the chosen technology, firms’ sourcing decisions are independent of their
endowment technology. Once this is complete, we calibrate ¢ (which governs the cost of
technology adaptation) and then recover the ex-ante distributions by inverting the firms’
policy functions.?’

To implement the first step, we map the technological distances in our model to a simi-
larity metric bounded between 0 and 1, facilitating the comparison between model and em-
pirical bilateral similarity.’® We define the similarity between two firms with technologies 6

and 0 as:

sim(6,0) = exp(—(0 — 0)?). (31)

Analogously, the similarity between the mean technologies of two country-sector pairs is:

sim (g o) = exp(—(pa — p0)?). (32)
We choose {3} by solving the following problem:
o ’ 2
min ) [ln sim(py, wh) —In sim;](’]Dm} , (33)
{Ma} dio,j

where In simld(’,Dm is the log of empirical technology similarity between country-sector pairs

(d,i) and (o, ), averaged over the period 2012-2014, residualized by i-j fixed effects. With
this residualization, our calibration does not attempt to explain why, for example, the auto
industry is inherently closer to the auto parts industry than to agriculture. Instead, it focuses
on the differences between pairs of countries within the same industry pair, e.g., whether the
German auto sector is closer to the Chinese or American auto sector.”!

Problems of the form (33) is known to be challenging.’> We show in Appendix C.3 that
by fitting the logarithms of the similarities, it can be transformed into a classical multidimen-
sional scaling problem, which has unique solutions and can be efficiently solved for {3/ }.

To infer the standard deviation of technology, {U'i}, we match the standard deviation

of similarity between technologies within each (d,i). For each country-sector pair, we ran-

2Note that ¢ affects only the allocation of firms’ markups between profits and technology adaptation costs.
For this reason, once the ex-post distributions and other general equilibrium outcomes (such as wages and prices)
have been calibrated, ¢ can be adjusted without altering earlier calibration steps (see Appendix C.4 for details).

30 Although cosine similarity theoretically ranges from [—1, 1], the entries of the empirical similarity matrix (at
the country-sectoral level) are all positive, making the logarithm transformation possible.

31This approach is justified by two key reasons. First, our counterfactual analysis centers on how international
trade shocks shift the technological positions of countries. Although our one-dimensional technology space may
not capture all variations across sectors, the most important variation for our study is the difference between
countries within a sector pair. By matching the residualized data, we match precisely these cross-country differ-
ences. Second, under the Cobb-Douglas production function of intermediate-good producers, adding exogenous
technological distance between pairs of sectors amounts to adding exogenous mutilative cost shifters. Therefore,
enriching the model (or its calibration) to match exogenous sectoral distance will not affect the counterfactual
findings. Our calibration and counterfactuals have the interpretation of holding constant the sectoral technologi-
cal differences while focusing on country differences.

32Gee e.g., Chapter 13 of Borg and Groenen (2007).
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Table 5: Summary of Model Parameters

Parameters Descriptions Value Target/Source

A. Externally Calibrated

YT, 4L, o IO Structure and Consumption Share - WIOT; N =29,5 =19

Ly Labor Endowment - PWT

n—1,0 Trade Elasticity 4 Simonovska and Waugh (2014)
B.‘]ust-Identiﬁed

Ay Productivity - Countries’ output shares in each sector

Tg o7 T;(I)] Iceberg Trade Costs - Bilateral trade shares (WIOT)

F Compatibility Incentive 122 Firm-level import-similarity corr: 0.021

¢ Adaptation Costs 0.58  Country-sector-level similarity-tariff elas.: -0.007
C. Best Fit

y;, 0'1: Ex-post Technology Distribution - Tech similarity between countries and sectors
iy, o Ex-ante Technology Distribution - Inverted from calibrated ex-post distributions

domly sample 1,000 patents from year 2014, calculate the pairwise similarity of their abstract
embeddings, and compute the standard deviation of these similarities by sector. We then
average this statistic across countries to infer {c"}.

The second step of our calibration parameterizes the trade and production aspects of the
model to match the data across a set of moments, as explained below.

Productivity and Trade Costs. We calibrate country-sectors’ productivity {A’} to match
the output share of (d,7) in each sector i, and trade costs {Té o T;éj } to match the trade shares
of intermediate and final goods.*

Technology Compatibility . The parameter f governs firms’ input-sourcing decisions
given their chosen technology. We calibrate f by matching the correlation between import
indicator and technology similarity (i.e., Column 3 of Table 2) using the simulated method
of moments. Since the regression focuses on Chinese firms, our simulation centers on China
too. For each sector i, we draw 10, 000 firms from the ex-post distribution @EHN. We simulate
whether a firm with technology 6 imports from (o, j) using equation (8). We then regress the
import indicator on the technology similarity between 6 and (o, ), defined as sim(6, i),
controlling for o-i and firm fixed effects. This exercise sets f = 12.2, under which the model-
simulated regression matches the empirical coefficient of 0.021.

Adaptation Costs ¢. We choose the adaptation cost parameter ¢ to match the elasticity of
technology similarity with respect to tariffs, as estimated in Column 3 of Table 4. As Proposi-
tion 4 illustrates, conditional on f and other model fundamentals, this elasticity identifies ¢.
To calculate the model-based elasticity, we simulate changes to trade costs {Té , ), mimicking
the size of the actual MFN tariff changes observed over time for each (d, j). This produces a

counterfactual equilibrium. We then treat the calibrated equilibrium and the counterfactual

%Trade and output shares do not separately identify all {A!,} and all {Té o7 ng } jointly (Burstein and Vogel,
2017). Our counterfactual results are invariant to normalization choice in the calibration of these parameters.
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Figure 2: Estimated Technology Distributions for Selected Economies

Notes: Filled dots are the means of firms’ ex-post technology distributions, { y;}, averaged across sectors for each d for selected
countries. Unfilled circles are the means of their endowment technology { ‘12;}.

as two periods and regress the model’s technology similarity between d and (o,j) on the
logarithm of Té ,» controlling for a range of fixed effects mirroring the empirical specification.
We adjust ¢ until the model’s elasticity matches the empirical coefficient of —0.007, yielding
a calibrated value of ¢ = 0.58.

Numerical Implementation. We implement the calibration as follows. First, we estimate
the ex-post distribution parameters {y,, o'} to best match the empirical technology similarity
within and between country-sectors, as previously described. Given these parameters, we
employ a nested algorithm for the second step. In the outer layer, we adjust f to match the
firm-level extensive margin import-similarity regression coefficient. In the inner loop, we
solve for the competitive equilibrium, while simultaneously calibrating {Té o7 ng LB/ AL} to
match trade shares. We then simulate the model and feed the regression coefficient back
into the outer loop. Once this process is complete, we calibrate ¢ to match the country-
sector similarity-tariff elasticity and use the results from Proposition 8 to back out the ex-ante
distribution parameters {ji}, &'} from {3, 0’ }. Appendix C.4 reports the detailed procedure.

Table 5 summarizes the calibration. We discuss the implications of our calibration in the

next subsection.

4.3 Calibrated Technologies and Model Fit

Calibrated Technologies. Figure 2 shows the average (across sectors) of the mean locations
of ex-ante and ex-post technology distributions for a subset of countries. The filled dots
depict the locations of ex-post technologies. Among major economies, the technologies of the
U.S. and China fall at the two ends of the spectrum, whereas the technologies of other major

economies, such as Japan, Canada, and Western European countries, fall in the middle. This
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Figure 3: First Two Principal Coordinates of the Similarity Matrix

Notes: Plotted are the first two principal coordinates of the similarity matrix between country-sector pairs. The similarity
measure is defined as the log of cosine similarity of the average embeddings of patent abstracts between two country-sectors
(d,i) and (o, ), netting out sector-pair (i.e., i-j) fixed effects. Each dot corresponds to the principal coordinates of a country-
sector pair, obtained by solving a problem analogous to (33) in the two-dimensional space for technology. Country name
indicates the average coordinates of the country across sectors. Sectors in China and the U.S. are indicated in red and blue,
respectively.

pattern highlights a key feature of bilateral technology similarity statistics derived from the
textual analysis of patent abstracts: within sector pairs, American and Chinese technologies
tend to be less similar to each other than they are to those of other countries.

The circles in Figure 2 depict the average locations of ex-ante (endowment) technologies
for these countries. Two patterns are noteworthy. First, ex-ante technologies tend to cluster
spatially, with Asian economies grouped on the right and other economies clustered on the
left. This clustering may reflect the influence of geographic, historical, or cultural factors on
initial technological endowments. Second, with technology compatibility incentives, inter-
national trade brings countries’ technologies closer. Indeed, if countries do not engage in
trade, then firms will move toward the average technologies of their own countries.

Assessing Fit of Technology Similarity. Our model allows technology to be represented
in a high-dimensional space. For simplicity and transparency, however, we restrict our cal-
ibration to a one-dimensional space. To demonstrate that the calibrated technology posi-
tions are not an artifact of our one-dimensional representation, Figure 3 plots the first two
principal coordinates of the similarity matrix for country-sector pairs in a two-dimensional
technology space, which correspond to the calibration results (up to a scaling factor) if the
two-dimensional space were used. The figure shows that the divergence between U.S. and
Chinese technologies, with other countries positioned in between, remains a salient feature

of the data when viewed in this space.
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Table 6: Bilateral Similarity Between Country-Sectors: Model v.s Data

Log Similarity in Data
Log Similarity in Model @) 2)
at Ex-post Tech. Dist. 0.363***

(0.001)
at Ex-ante Tech. Dist. 0.001***

(0.000)

Obs. 302,664 302,664
Within R? 0.212 0.128
Fixed effects d-i, o-j d-i, o-j

Notes: This table assesses the goodness of fit in the model. Each column reports the regression of data log similarity between
country-sector pairs on model log similarity. Column 1 uses the ex-post technology distributions {},07} to construct model

similarity. Column 2 uses the ex-ante distributions { ;2{,, /}. Both columns control for d-i and o-j fixed effects. The reported
within R? excludes the variation explained by the fixed effects.

To evaluate more systematically how well the calibration captures the cross-sectional
technology similarities between country-sectors, we regress the log of empirical technology
similarity between country-sectors on the log of model-predicted similarity, controlling for
country-sector fixed effects. Column 1 of Table 6 reports the result. Approximately 21% of
the variation in bilateral similarities is explained by the model. Note that fully describing

2_
the bilateral similarity matrix between country-sectors would typically require M

pa-
rameters. Our model captures a substantial share of the variation by choosing {3/}, totaling
only NS — 1 parameters. As another benchmark, the explanatory power of bilateral distance
for bilateral trade, one of the most successful empirical model, is around 25%-50%.

Relevance in Shaping Technology. To further unpack the model’s fit and highlight the
role of compatibility incentives in shaping technology interdependence through trade, Col-
umn 2 of Table 6 regresses the log of data similarity on the log of model similarity implied by
the calibrated endowment technologies. Here, the regression coefficient declines to almost
zero, and the R? also falls from 21% to 13%. This comparison suggests that two-fifths of
the model’s explanatory power (8% out of 21%) can be attributed to endogenous technology
choices driven by compatibility incentives, whereas the remaining comes from countries’
endowment technology distributions.

Relevance in Shaping Trade Costs. Under our calibration, on average (weighted by
trade flows), costs arising from technology incompatibility is equivalent to 9.5% ad valorem
trade costs. The literature has found that, to account for the low level of international trade,
iceberg trade costs must be substantially higher than the level of tariffs (Anderson and van
Wincoop, 2004). Our model suggests that a modest but non-negligible part of these unob-

served trade barriers could be technological incompatibility.
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Table 7: Welfare Costs of a Semiconductor and Electronics Embargo on China

Import share in targeted ~ ASimys cping A Welfare (%)
China’s sector (%) China U.S. Others World
U.S. only 1.18 0.000 -0.006 -0.002 -0.001 -0.002
All countries 100 -0.014 -0.546 -0.056 -0.167 -0.232

Notes: This table reports the impact of an embargo on China’s imports of Computer, Electronic, and Optical Products from
the U.S. and other countries. Simjg chinq is the technology similarity between the U.S. and China as defined by equation (32),
averaged across sectors. Welfare is defined as household real income.

4.4 Counterfactual: Trade Conflict and Technology Decoupling

We use our model to evaluate the welfare costs of trade conflicts, with an emphasis on the
role of endogenous technology choice. To this end, we consider a counterfactual that is in-
tended to speak to the recent silicon blockade of the U.S. and its allies against China. In
this counterfactual, we shut down China’s imports of intermediate goods in the sector of
Computer, Electronic, and Optical Products from the U.S. and—due to the long-arm juris-
diction of U.S. sanctions—from other countries as well. In our data, this sector accounts for
approximately 19.7% of China’s total imports.

To implement this counterfactual, we shut down exports in this sector to China by raising
the corresponding trade costs to infinity. We investigate two cases: (i) only the U.S. imposes
the embargo, and (ii) all countries impose the embargo. In both cases, countries” endowment
distributions are set to be the same as their endowment distribution in the calibrated equilib-
rium. The comparison between these counterfactuals and the baseline equilibrium reveals
what would happen when the economy starts from the same technological primitives but
operates under different trade environments.**

Table 7 reports the main findings. Since the U.S. accounts for only 1.2% of China’s imports
in this sector, when only the U.S. imposes the embargo, the impact on the technology distance
between the two countries is minimal. While the embargo imposes more harm on China than
the U.S., the overall economic damage is limited.

The second row of the table reports the results when all countries impose the embargo
at the same time. China now sustains a welfare loss of 0.55%, about 100 times the loss when
only the U.S. imposes the export ban. In addition to the larger loss for China, two other
results are noteworthy. First, the distance between Chinese and U.S. technologies increases
substantially more than in the first experiment, despite the fact the direct U.S. sanctions are

the same in both cases. This occurs because, among major economies, China and the U.S.

34By holding endowments in these counterfactuals fixed at the ex-ante distribution in the calibrated equilib-
rium, we adopt the view that countries” technology endowments are persistent. According to this view, sus-
tained investment in technology adaptation is necessary for firms to deviate from their endowed technology, so
different counterfactuals start from the same endowment.
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Figure 4: Technology Distributions Before and After the Embargo for Selected Economies

Notes: Dots are the ex-post means in the baseline equilibrium, and stars are the equilibrium with the embargo. Blue indicates
countries moving toward the U.S. and red indicates countries moving toward China.

occupy the two ends of the technology spectrum. As Chinese technologies shift away from
those of other countries due to the embargo, they also shift away from U.S. technologies.
Second, the welfare cost to the U.S. is larger than before. This amplification occurs for two
reasons: first, production costs in China increase due to the direct effect of the embargo,
and the rest of the world must now pay higher prices for Chinese products; second, the
endogenous divergence in the technologies around the globe makes souring intermediate
inputs even more costly.

The Role of Technology Decoupling. To shed light on the role of endogenous technol-
ogy, Figure 4 plots the changes in countries’ technologies due to the embargo. The upper
panel depicts the change in the mean technology of the targeted industry. As discussed ear-
lier, the embargo leads to a divergence of technologies between China and the U.S.% This
divergence results in a realignment of other countries’ technologies. We indicate a country
in blue if its technology moves toward the U.S. and in red if it moves toward China. Among
others, Japan, Mexico, and European nations move closer to the U.S., while Korea is one of
the few that shift toward China. However, even as most countries’ technologies move toward
the U.S., the gap between their technologies and U.S. technology may still widen because the
change in technology choice is smaller than that of the U.S. This widening technology gap
contributes to amplified welfare costs for the U.S.

Because of the compatibility incentives, the divergence in technologies in semiconduc-

35The embargo directly impacts the technology choices of downstream sectors. For the Computer, Electronic,
and Optical Products sector, the most affected downstream sector is itself, as it relies heavily on its own inputs.
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Table 8: Mechanism Decomposition

ASimUS,Chinu A Welfare (0/0)
China U.S. Others World
Fixed Technology 0.000 -043 -0.01 -0.04 -0.12
+ response of targeted China’s sector -0.002 -0.33  -0.02 -0.06 -0.11
+ response of all sectors in China -0.010 -051  -0.03 -0.10 -0.18
+ response of all country-sectors -0.014 -0.55 -0.06 -017  -0.23

Notes: The rows show the effects of allowing different degrees of changes in firms’ technology choices under the embargo. The
‘Fixed Technology’ row represents the scenario where technology choices remain fixed at their calibrated equilibrium values.

tors spreads to all other sectors via input-output linkages. The lower panel plots the mean
technology for each country across all sectors, including those not directly affected by the
embargo. The changes are qualitatively similar to those in the target sector.

To underscore the importance of endogenous technology decoupling on welfare, we re-
run the embargo scenarios under the assumption that firms cannot change their technology
choice after the shock, effectively freezing technology choices at the pre-embargo equilib-
rium (‘Fixed Technology’). The results, shown in the first row of Table 8, reveal that when
technology choice is restricted, welfare losses are significantly smaller for China, the U.S,,
and the world. In contrast, when firms can adapt their technology, technological responses
amplify welfare losses—by 28% for China (from 0.43% to 0.55%), by 500% for the U.S. (from
0.01% to 0.06%), and by 92% for the global average (from 0.12% to 0.23%). This amplification
occurs because, while individual firms benefit from the ability to choose technologies most
suitable for the embargo trade environment, the broader economy suffers from the negative
externalities arising from technology incompatibility across sectors and countries. These ex-
ternalities compound via input-output linkages, increasing the overall welfare costs of the
embargo.

We decompose the role of various margins of technology choice in the remaining rows of
Table 8, gradually introducing technology changes—from the most directly affected sector to
all sectors in China, and to all other countries. Row 2 shows that when firms in the directly
targeted sector in China adjust their technology, China’s welfare losses actually decrease.
These firms can re-optimize by balancing sourcing efficiency against adaptation costs in re-
sponse to changes in sourcing origins, as reflected in Figure 4a. However, these unilateral
adjustments create externalities for downstream sectors in other countries, contributing to
additional welfare losses abroad.

Row 3 shows that as firms in non-targeted sectors in China adjust their technology choice,
the negative externalities outweigh the benefits, leading to greater welfare losses for China
and foreign countries compared to the ‘Fixed Technology” scenario. Finally, Row 4 demon-

strates that when firms in other countries adjust their technologies, technological decoupling
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becomes more pronounced, further increasing global welfare losses. Almost all of the U.S.
loss and half of the global loss from the embargo arise because of endogenous technological
decoupling.

These counterfactual findings echo the externality mechanisms discussed in Propositions
7 in the two-country setting. It is worth noting that in an environment with multiple coun-
tries, endogenous technological divergence between any two does not necessarily reduce
welfare. For instance, if a trade conflict between Korea and Japan leads to a technologi-
cal divergence between the two, welfare may improve—if the positive externalities of Japan
aligning more closely with U.S. technology and Korea with Chinese technology outweigh the
negative externalities of divergence between Korea and Japan. This possibility highlights the
value of developing a quantitative framework and disciplining it with data on technology

similarity.

5 Conclusion

In this paper, we construct a quantitative trade model that incorporates endogenous produc-
tion networks and horizontal technology choice. In our framework, firms jointly decide on
their technology and suppliers under compatibility incentives, with both decisions shaped
by general equilibrium forces. We establish sufficient conditions for equilibrium existence
and uniqueness and provide tractable aggregation results, making the model suitable for
quantitative applications.

Using patent and trade data, we provide novel evidence at both the firm and country
levels supporting the core mechanisms of our model. Our quantitative analyses reveal three
main findings. First, trade-induced endogenous technology plays a significant role in shap-
ing global technologies, accounting for two-fifths of the variation in technological proximity
between countries, while differences in endowment distributions explain the remainder. Sec-
ond, technology incompatibility imposes an average cost equivalent to 9.5% in ad valorem
terms in international trade, underscoring the importance of this mechanism. Last, trade
conflicts between the U.S. and China can lead to technological decoupling between them
and trigger realignments among other countries. These endogenous responses amplify the
losses from the conflict, accounting for almost all of the U.S. welfare loss and half of the
global loss.

Our framework can be extended in two directions. First, in reality, firms and coun-
tries develop institutions to manage the externalities highlighted in our model. Examples
include supply chain integration to internalize externalities and collaborative efforts to es-
tablish common standards. Investigating the equilibrium impacts of such mechanisms is
a promising research avenue. Second, our model is static and therefore abstracts from dy-

namics and vertical innovation. Integrating our model into a dynamic setting can illuminate
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how compatibility incentive in firms’ innovation decisions and supplier choices shape both

industry dynamics and aggregate growth.
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Appendix A Theory

A.1 Proof of Proposition 1 and Corollaries 1 and 2

We restate Proposition 1 below:

Proposition A.1. Under Assumption 1, p',(6), the factory-gate price of a firm in (d, i) with technol-
ogy location 8, follows a Weibull (inverse Fréchet) distribution with c.d.f.

Fi(pi0) =1—exp (= [p/Cy(6)]"), (A1)
The location parameter C',(6) is determined as the fixed point of

j;[wdw“ I [T [ [, Cii@)1(e,0)) Fa0(8)| (a2)

Ca(0) =

where ! is a sector-specific constant, and @), is the probability measure that describes the distribution
of chosen technologies across firms in (o, j).

We prove Proposition 1 by guess and verification. We start with introducing a lemma.
The lemma employs the Poisson assumption in the draws of suppliers to characterize the
unconditional distribution of supplier efficiency.

Lemma A.1. Let { X}, be a collection of random variables indexed by z € (0, 00) such that
F(x,z) =Pr(X; < x|z)

is jointly continuous in (x,z). Let X be a random set of uniformly drawn X, such that for any
21 < zp € (0,+400), | {X; € X : 21 <z < 2} | follows an independent Poisson distribution with
mean H(z1) — H(zz), where | - | denotes the number of elements in a set, and H(z) is a decreasing
function on (0, +00). Then, | {X, € X : X, < x} | follows a Poisson distribution with mean

/OOOF(x,z)d(—H(z)),

provided that the integral exists.

Proof. Since X, is uniformly drawn, | {X; € X : X, < x,z1 < z < 2} | follows a Poisson
distribution with mean G(x, z1, zp) that satisfies
inf F(x,z)[H(z1) — H(z2)] < G(x,21,22) < sup F(x,z)[H(z1) — H(z2)].
ZE(Zl,Zz] 26(21,22}

[ee]

Taking any monotonically increasing sequence {z;}{*; with z; = 0 and lim;_, z; = 0, we
have: (since the number draws in any interval follow independent Poisson, the sum of draws
across these intervals follow a Poisson)

inf F(x,z)[H(zj) — H(zi41)] < lim G(x,0,2) < ) sup F(x,z)[H(z) — H(zi41))-
i=1 ZG(Z,‘,ZiJFﬂ e i=1 ZG(Z,‘,Z,‘+1]
Therefore,
lim G(x,0,2) = / F(x,2)d(—H(2)),
Z—00 0
provided that the integral exists (in the sense of Riemann integration). O
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Proof of Proposition 1. We now prove Proposition 1.

Proof. Suppose p',(6), the factory-gate price of a firm in (d,i) with technology location 6,
follows a Weibull distribution with c.d.f. specified in (4). We verify that this is consistent
with firms’ behaviors in the equilibrium.

Consider a firm v in (d, i) with technology location § = 6(v). This firm chooses among
all techniques one that minimizes its production cost. For each technique , the firm chooses
one supplier in each sector j to source input.

We first characterize the distribution of production cost for different techniques, which
we denote by ¢/(v, 7). Recall that

d(v,r) =min min &(v,w),
0 we(v,r)

where & (v, w), the (compatibility-adjusted) cost of for input j from supplier w € (v, r) is

. ; 1
&l =7 . .
&v,0) = Ty pla0) s - HW),B(0),

Assumption 1 specifies the distribution of the match-specific efficiency of potential sup-
pliers, z(v, w). Following Lemma A.1, from any origin country-sector pair (o, j), the number
of suppliers such that each supplier w has a technology location 6(w) around 0 and an effec-
tive marginal cost & (v, w) less or equal to ¢ > 0 follows a Poisson distribution with mean

/ Fg[%}é]gzigildz : d®£(é)

0 T, - 1(0,0)

- / El(x;0) 0 ¢ [——C—)%dx - dO@)(0)
0 T - 1(6,0)

-/ T [1(60,0)x) Al (x:0) - (<) - dO)(8)

Tdo

=T(1—g/A)- [(6,6)CH(E)] ¢ - <T§>g -dej (). (A3)
do

Integrating over 6, the number of suppliers with effective marginal cost & (v, w) less or equal
to any level ¢ > 0 follows a Poisson distribution with mean

I(1—2/A)-( )¢,

c
Tjo " Mo (0)
where AJO() is defined in (7),

A(©) = ([1Ch@)t(0, ) Cal(®) <.
Therefore, for each (o, j), the probability that no such supplier arrives is

c

—)¢.
T, - Ab(6)

Pr| min &(v,w)>c
we) (v,r)

= exp [—T(l—é//\) - (

The cost distribution for each j when choosing technique 7, ¢/ (v, ), which is the minimum



over all countries, is hence characterized by

Pr[c/(v,7) > c] = exp[-T(1—C/A) Z T A (9)

do

= exp[—A}(0)cf], (A4)

where A (6) =T(1-¢/A) Zo(TdO ( )¢
Among all available techniques, the firm chooses one to minimize its factory-gate price:

pv) = min s - ] Tl

Assumption 1 specifies the distribution of production efficiency A(v, r). By applying Lemma
A.1 again, the number of techniques such that the factory-gate price is weakly less than p
follows a Poisson distribution with mean

A e L <

~H§[cj]€_1/~\£l(9)exp[ AL(0)[)FA[AL a2 1dc! . de3da

—
I o U S R )
Y [IR7) © = ATTesp(omala e dn..dn*da

= [T [T < ) TTep(m AN pliod = TTAL) € Y s~ cmet

= /000 /0°° /()w][[H[mj]T < K] H[F(l — é//\)]% eXP(—mj))\KfAfldml...dedK

] ]
A (plo " TS (e, A(0)) 61
] o
— (&) AL (e TTE ey Ab0) ),
] o0
where
== / / / w]¥ < K]H[ru—é/mfﬁiexp(—w “Aldm!dmPdi) A (A5)

]

is a sector-specific constant that depends on the technology parameters only.
The probability that no such technique arrives is

Prlp(v) > p] = exp(—[p/Cy(6)]"),

where

Ci(0) =~ lwd " [T AO] 4 = 22 fwd] " T [ [, Ch(@)1(6,8)] a0} (8)) "
d j o



Therefore, for each destination country-sector pair (d, i), the factory-gate price of a firm
with technology location 6 is characterized by

Fa(p:9) =1 —exp(—[p/Cy(0)]").
This completes the proof of Proposition 1. O
Proof of Corollary 1. As is shown in (A.3), for any firm in (d, i) with targeted technology
location 6, in any sourcing country o, the number of suppliers from sector j with technology

location § and effective marginal cost less or equal to any level ¢ > 0 follows a Poisson
distribution with mean

[(1-¢/2) - [6,6)CH(8)] * - (5-)%dE}(8).
Tdo

This implies that the effective cost of sourcing sector-j input from firms with technology
location around 6 from o, denoted 5{1 , (0, 0), is distributed with c.d.f.

Gl (c:6,8) =1 —exp[-T(1—/A) - [T}, t(6,0)Ch(8)] ¢ - d@) (8)].

Therefore, the probability of sourcing sector-j inputs from firms in country o with tech-
nology location around 6 is

Pr[(o0,0) = arg min 5{10,(0, 0]
0,0

+oo . - . . . -
= Pr(e, (0,0) =cné,,(6,0) > c,V(,0) # (0,0)]dc

+oo
_/ [T [1-Gl(c;6,8)]dGl (c;0,0)
(0/) £(04)

:/0+°° exp[ (1-¢/A) Z/rdo/ £(6,6)CL,(6)] 4@/, (8) - ]

T(1=8/A) - [, (0, 8)CH(0)) 5@} (0) - ¢t~ fde
_ [G,H0.0)C(0)] ¢

de ()
Yo [T (0)] ¢
= Xég(@,@)d@{,(f)).
Integrating over 0, the probability of sourcing from firms in country o is

[TdoA] (0)]°¢ ‘
Yo [Ty AL (0)] ¢

Xdo /Xdaged@]()

This completes the proof of Corollary 1.

Proof of Corollary 2. Since firms engage in monopolistic competition when selling to
final-good producers, they charge a monopolistic markup 7 /(17 — 1). Final-good producers
maximize their profits

P~ L [ @)l @)



subject to (1), where the factory-gate price P{i ,(w) follows the distribution characterized by
Fi(p;0) =1 —exp(—[p/Ci(0)]"), and the ideal price index for the final good in d,
Pl - =
i Paq
Optimization of the final-good production implies that in country d, the market share of
any good w from country o in sector j over all goods in the sector is given by
Ui , Ui -
%Tdo]péo (w)xéo (w) i [/Tleoijio (w)]l 1
0 PaQa (P
Taking expectation overs firms with technology location around , we have the expected
expenditure share allocated to these firms:

B[, ph(8)) 7]

1, (0)dO(9) = Py -d®)(0)
[qnlrdo]l WlE[Pd ()] 4ol (d)
Zo’[ Tdo, [ E[ pdo/ (6)- U]d®] (0)
) GO

= - uj 7 1
Y T+ 52) - [y (A )

where the last equation follows the property of Weibull distribution, ! and
Ay = ([1Ch(@)a0)(@) ).

Integrating over 0, the total expenditure share allocated to goods produced by firms in
country o is

[Tdo A] ]1 1

_ ]
0 0 Zol [Td0’ ] -1

This completes the proof of Corollary 2.

A.2 Proof of Proposition 2
We restate Proposition 2 below:
Proposition A.2. Suppose wages {w,} are given.

1. Assume {©} have bounded support that is contained in [—M, M] for some M > 0 and
have associated density functions {c,}. If {F < 1/M?, then there exists an equilibrium with

ISuppose random variable X follows a Weibull distribution with c.d.f. F(x) = 1 — exp[—(x/C)"], where
C > 0and A > 1 are parameters. Then, for any € > 0,

€

+o0 00
E[X®] = / x¢-exp[—(x/C)M - CMAxr ldx = C¢ - / K¢/ * exp(—x)dx = C*-T(1+ X)'
0 0

where I'(+) denotes the Gamma function.



firms’ technology choice {g',} being continuously differentiable functions. Moreover, in this
equilibrium, the choice of firms from (d, i) with endowment technology 0 is characterized by the
following first-order condition with a unique solution.

gu(0) = (1—w')f +wi21_71]7,1 / X (85(9),0)gh(8)d@}(9), V8 € [-M, M] (A.6)

2. If, in addition, | < 537 and § > ¢, where ¢ > 0 is a constant determined by parameters
(¢, £, M, L) as detailed in the proof, then such an equilibrium is unique.

We outline the proof and explain the intuition behind each step, with technical details
deferred to subsequent lemmas. To simplify notation, we begin by introducing the following
constants.

Definition A.1. Given wages wy and parameters M, 1, 'yiL, gt =i A;, Té , Of the model, define con-
stants

e 7k = min;y'L.
(1-1)(A=9"™)F _
(=1) A=y )E+¢”

2 (wg)"" /AL

o W w = max; w'.

. é’;
e M =max{l—w'(1-IM)}, M =1-w

~7 _ 3wliM3
* M =T

o« MC = maxg,;

Jr [Ing) + (1 =) In{x [, )47 |

We first characterize the optimality conditions for technology choices. Under Assump-
tion 2, with the objective function specified in (15), the first-order condition with respect to
technology choice 6 is

§8—0) = (1~ 1) 5510 C(0) = (7 = DF- Lo [ ), (6.6)(0 — 8)a0}(©),

1,0
which can be rearranged into
6= w Z 7 i /Xdo (6,6)8d@}(8) + (1 — w')d, (A7)
with w! < 1. The second-order condition requires that —¢ — (7 — 1) 5192 InCi(0) < 0.
To explicitly work with the policy function, we rewrite (A.7) into
ij ~
Z i zL/X” 0,0:¢,8")g.(0)d0 + (1 — ), (A.8)



where, to slightly abuse notations and make them dependent on g and g/ explicitly, 2
(1) Fexp (—5C)(0:8,8") ) exp (—14E(g(6) gf 2) [gb)'(
S S [e)) Fexp (~2Ch(B:8,8") ) exp (—32F(g}(0) — gh(8))2) | g’ 5)@@(5)d5’
- , ij , - o
CiiB:8.8) =g~ = in (L [l Fexp (—écéw;g,g’)) exp (»@t( 4(0) —gh(®) ) 85)'(9)z
j o
(A.10)
Note that the derivative introduced by the change of variable in the integration has been
incorporated into the definition of x}) in (A.9) (via the term [g)]'(6)c,(0)). Our goal is to
prove the existence and uniqueness of an equilibrium with the policy function characterized
by (A.8).
To show existence, we formulate a fixed-point problem for the policy function g. We

work on the space of function defined over [—M, M| with uniformly bounded value and
Lipschitz continuous first derivative. Define

G = {g:[-M, M] — RN*3, g is differentiable, ||g|| < M;

A )
)(;]O(G, 0;8,.8) = 5 (A.9)

[¢5]/(6) € [M’,M'] and g’ is Lipschitz continuous with a Lipschitz constant M }.

Define an operator 7 on G as below (viewing g’ as an operator mapping g to its first
derivative):

ij _
wz i zL/X” 6,0:¢,8")g.(0)d0 + (1 — ), (A11)

with w' < 1. The fixed point of operator T, if exists, solves the first-order condition of the
technology adaptation problem, i.e. equation (A.8).

Intuitively, if '}, does not vary across 0 or change by g, then we have already established

the unique existence of g by the contraction mapping. To see this, denote § dO(O) = x1,(0,0)
under the premise. Then the equation above is reduced to

7” _
[Tg]5(8) wz T xi{o +(1— w8,

with 7T trivially satisfying Blackwell’s sufficiency conditions for contraction with a modulus
W = max; w'.

Following this intuition, Part 1 of the proposition says that if {f is not too large relative to
the variation in 6, then the derivative of )(Zo(@, 0;¢,8") in 0 is uniformly bounded. The first
and second derivative of g thus exist and are uniformly bounded. The first derivative of g
being bounded also implies that the value of g is bounded on the domain [—-M, M]. This is
sufficient to establish compactness of the space of g and hence ensures existence.

The formal proof of existence consists of three steps. Firstly, in Lemma A.2, we establish
the existence and uniqueness of C given g, g’ by formulating (A.10) as a fixed point problem
for C. It also establishes that C is continuous in g,¢’ and is differentiable in § with bounded
derivatives for any given g,g’. Since g’ enters the operator 7, we equip G with the C! norm:

2Note that Xgo(é, 6; 8,8') takes the endowed technologies as the first two arguments, which is different from
X{io(" -) in (A.6) that takes the chosen technologies as the arguments. Also, C’fl(é; 2.8)=In C;,( g;(é))

8



llgllg = l|gllec + ||g’||co- It follows that yx is also continuous in g, g’, and that 7 is continuous
in g with the norm || - ||g.

Secondly, Lemma A.3 further characterizes the uniform bounds for 7g,[7g] and the
Lipschitz continuity of [7g]’. This implies that 7g € G.

Lastly, in Proposition A.3, we show that since g € G is closed and has uniformly bounded
values and Lipschitz-continuous first derivatives, by the Arzela-Ascoli theorem, G is com-
pact under the norm || - ||g. That 7g € G and 7 is continuous under the norm || - ||g thus
ensures the existence of a fixed point of 7 in G by the Schauder fixed-point theorem.

For uniqueness, Part 2 of the proposition says that if further ¢ is large enough, then the
variation of x/J (9,0;¢,8) in (g,&’) is bounded uniformly to ensure that 7 is a contraction.
To show this, we treat (A.8) and (A.10) as a joint fixed point problem for (g,C). We show
that with f small enough and ¢ large enough, the joint operator defined by the left-hand
side of these equations forms a contraction mapping under the C! norm of the space of g
combined with the C? norm of the space of C. This is achieved by proving that the induced
matrix norm—specifically, the maximum absolute row sum norm—of the Jacobian matrix
containing the Fréchet derivatives of the operator with respect to (g,C) is uniformly bounded
by a constant less than one, provided that f is sufficiently small and ¢ is sufficiently large.
The bounds on the Jacobian entries are detailed in Lemma A.4, and the formal proof of
uniqueness is presented in Proposition A 4.

Lemma A.2. For g € G, there uniquely exists a C(0;g,8") defined by (A.10) that is bounded and
continuous in (0,8,8"). Further, C satisfies

(1) ||Clleo < MC, in which MC is defined in Definition A.1.

(2) V(3,8),C(9;8,8") is differentiable in 8 and ||C'||os < (1 — +L)2EMM .

Proof. Denote G = {g € CO([—M, M] — RN*5) : |||l < M}, G' = {¢' € C([-M, M] —
RN : M < ¢’ < M’}, and M = [-M, M], where M’ and M are the constants defined in
Definition A.1.

Define C = {€ : M x G x G — RN*S, ||C|| < M, C is continuous}, for MC defined in
the proposition. It can be shown that C is complete under the infinity norm.

We now prove operator 7¢ mapping from C defined below has an image contained in C:

i (0o o) — i 7 - iAo 1 _ = e P p AN AN 1A
Tl Big.g) = ncy~ D (L [l o (~echibig.g)) (- 527(64(0) - £49))) el O)ch @)a).
Since C € C is continuous, 7C is also continuous. Since ||g’[|e < M <1and

exp (—2Cl(0:8,8')) € lexp(—CME), exp(EMC)],
we have

ITClil < g+ (1 7™ In{Llxg,] 83 + (1 =) M

= [|I7°C]lo < max + (1= "M < M€,
]

Ing)+ (1— o) In{Y_[x) ] ¢} ¢

in which the last inequality applies the definition of MC.

9



We now verify that 7¢ satisfies Blackwell’s sufficiency conditions for contraction. For
any C,C € C,such thatC < C point-wisely, it trivially holds that [TCC]; < [Tcé];. And it
holds that T¢[C(6;g,8') +c|; = [TCCI;(6;8,8') + (1 — " )c < [TCl(6;8,8") + (1 —~")c
for ¢ > 0. 7€ is thus a contraction mapping with a modulus 1 — 7*. 7¢ thus has a unique
fixed point that is contained in C by the contraction mapping theorem.

Next, consider

TCly 08.8) = L0"E [ x0.6:8,8") [(2i(@) — £0(8)) ] 28]/ (8)?

= |[T¢C)} (B:8.8')

where the last line applies that ), | Xgo(é, 0;2,8')d0 = 1 and [g,(f)| < M. Note that the
derivation for [TCC ]fi, does not rely on the starting point C being differentiable in 6. Thus, C
is differentiable in 6 and ||C'||c < (1 — zL)ZfMM/.

< (1 —91)2iMM,

O
Lemma A.3. For g € G and T g defined by (A.8), restated below

ij ~
Z sz/X”f) g)gh(@)dd+ (1 -,

(1) Tg is continuous in g under the C! norm, ||g||co + ||g’ || oo-
2 || Tgllo < M.

(3) Vg € G, Tg(0) is twice differentiable in 8 with [Tg),' () € [M', M'], for M’ and M’ the con-
stants deﬁned in Definition A. 1 (T8l ( ) is Lipschitz continuous with a Lipschitz constant
WTEMEM + 3wiZEM3 < M.

Proof. From Lemma A.2, C is continuous in g, g’ under the infinity norm. By the definition
of x in (A.9), x is continuous in (g,g’) and so is Tg. T g is thus continuous in g under the C!
norm. This proves part (1).

Next, since ¢)(6) € [—M, M], V0, we have that [T8]5(6) =6 > 0for § = —M and
[Tgl;(0)—6 < OforG = M. By the intermediate value theorem, 30* € [-M, M], [T g]},(6*) =

9. Now consider V8 € (0%, M]. Since M' < 1, we have that

(Tgl (@) <8+ M (@—8) <0 +(@—6) << M,
Similarly, V0 € [—M, 6%)
0)>0"—M(0*—8)>6"—(0*—0) >0 > —M.
€ [—M, M|, V0. This proves part (2).

(T8l
We thus have [T g]’(9)

10



Lastly, consider

WY Y Hg] (8)covl[gh(0), gh(6)] + (1 — ),
]

where cov;j[-, ] is the covariance between the two arguments across (0,8) under the distri-
bution characterized by Xga (6,0) and the second line applies Lemma A.5 stated below. Since

< [¢4]() < 1 and by Popoviciu’s inequality on variances covg [g{,(é), g{,(é)] < M?, we
have that

1-w < [Tgli (0:8,8) <1—w'(1-(IM?).
Further, observe that V8, € [—M, M],
78]k (8) - [Tgly (0)]

7 (i) 18 - 0] cov) 5[5 (8), b B)]]
+[841'(0)|cov” (1gh (012 85(8)) — 2000 53(9), 5@ I(L [ 11, (,0)gh(@)dd) | [0 — 6

< [WigEMP M + 3w'CEM] |0 - 8],

where L(-) denotes the Lipschitz constant of a Lipschitz continuous function (+), 0 is between
0 and 6, and the third inequality applies the definition of Lipschitz continuity of g’ and the
mean value theorem. Therefore, (78], '(9) is L1psch1tz continuous w1th a Lipschitz constant
W'l IMZM + 3 'rEM?® which satisfies w'( IMZM + 3w TEMB < M by the definition of M.
This proves part (3).

O

Proposition A.3. Given wages, assuime {@{,} have bounded support that is contained in [—M, M|
for a positive constant M > 0 and have associated density functions C{;. If¢ > 0and JF < 1/M?,
then an equilibrium exists which satisfies that the policy function g is twice differentiable; ||g||c <
M; [gi)/(0) € [M',M'],¥(8,d,i); g is Lipschitz continuous with a Lipschitz constant M ; for
constants M', M, M defined in Definition A.1. Moreover, under such an equilibrium, the first
order condition of the technology direction choice problem has a unique solution that characterizes the
optimal decision.

Proof. Define G = {g : [~M, M] — RN*S, g is differentiable, ||g]l« < M; [g}]'(0) € [M', M],

g’ is Lipschitz continuous with a Lipschitz constant M’ }, for M’ M, M’ defined in the
proposition. Equip G with the C! norm: ||g]lg = g/l + ||§’ |leo- It can be shown that G is

11



closed. By the Arzela-Ascoli theorem, G is compact under the norm || - ||g.

From Lemma A.3, 7 defined by (A.8) is continuous under the C! norm of G and Tg € G.
By the Schauder fixed-point theorem, G contains a fixed point of 7.

For a fixed point g, i.e. Tg = g, it solves the first-order condition of the technology
adaptation problem. We now verify that the second-order optimality condition holds for
the technology direction choice problem. With the objective function specified in (15), the
second-order derivative of the objective with respect to choice 0 is

d2

where
o )
L MCHO) =F- X0 [ 00, (6,8)(6 — 8) + 1, (6,8)40)(0)
1,0
— T Yy [/aexd (6,6)(0 — 0)d@)(8) + 1
]0

= (P ny”var ) +E(1 -9

€ [[(1— ™)1 - CM?), E(1 — o).
j

Here, var),(6) in the third line is the variance taken under distribution X{i ,(0,0) across (o,0),
and the line follows Lemma A.6. The last line applies that ||g||cc < M and the Popoviciu’s
inequality. Therefore, the second-order condition of the technology choice problem

. d*
holds globally, provided that 1 — ZEM? > 0. O

Lemma A.4. Denote G = {g € CO([—M, M] — RN*5) : ||g|| < M}, G' = {g’ € C°([-M, M] —
RN*S) : M/ < g <M}, and € = {C € C°([—M, M] — RN*%) : |[C||os < MC}, for M/, M,
and MC defined in Definition A.1. Define T8, T¢', T¢ mapping from G x G' x C, given below

[T3(g,8,C)] =w Z 7” zL/X 6,6 ,g’,C)g{;(é)dé+(1—w”)(§,

7% (8.8,C)li :wZ WzLZ/aedeBf)g,g C)gh(8)df + (1 — W),

T¢(g,8/,0)]i(0) = Ing} - ]Z“Q in (2 [ ed) Fexp (~ch®) exp (~520(51(0) ~ £h0)2 ) [ Db (0)a6),
where to slightly abuse notations, x is the one defined in (A.9), but also highlighting the dependence
onC:
(1) E exp (—2CA(8)) exp (—l@f(gzxé) gh(0)?) [5)'(0)5(0)
T ] top (20h@) op (350 b @) l5n OB 0)d

X1 (0,6:8,8,C)

(A.12)

Then we have
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(1) T$(3,8,€)€G, T¢(88,C) G, T (g.8.C)eC

(2) Lo 106, TN < @ [3GEM2 +1). Ly 05, TSN < S5 T 198, T4 < @M.

(3) L 1905 m TS| < BWG2BM. L[|, TS| < 3552%3 +@CM. e (196, TS| <
3wPEM?2,

(4) Lo 105 m TN < (1= yM)26M. L 105, TEN < (1= ") 37+ L 196, TEN < 12"

Proof. Combining the proofs for part (2) and (3) of Lemma A.3, and the proof for part (1) of
Lemma A.2 we have proved part (1).
For part (2), suppressing the argument (g,4’,C) to simplify notations, consider

LR URTD W WzL Z/agmxda d9+2/x (8,0)2% 54630 }.
Apply part (1) of Lemma A7 stated below:
L [ e 6,0)51(6)80 = ~2{ ~ E5i(@)eou] (3,51 (0), 54(6))
[0k ,,8(8)]cov!] (gh(B), 4(8)) + F - cov’) (gh(8)aK ) (B) g{;(é)}.

By Popoviciu’s inequality on variances and note that 8g m&y = 1for (m,k) = (d,i) and zero
otherwise, we have

Z/agmxdo (8,6)g.(6)dd

0

< g{th LIM2 4 th} — 30EM2.

m,k

Therefore,

)
e
g

2
=

)‘ <w [3z;tM2+1}

Consider

/ag X (8,8)g)(0)d0

2 ZL@cov”(ag,,mln[gfo]%é),gé(é)),

j
which applies part (2) of Lemma A.7. Note that 8;,/”1 ln[g{,]’ =1/ [gé]/ for (m,k) = (d,i) and
zero otherwise; we have

w'tM

%\[aéf,m7g1z<é>] <55F
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Similarly,

P T0) = ' E o B f @
7Y

- _wizl ’YLgcov (8](‘3,”0](5) g'(5)>,
]

which implies

Y| 196, TS0 (0)] < wiem.

m,k
For part (3), expand

(7 :wz ngt z/x (8,8)[gl(0 2dé_(z/xgo(@,é)g{;<é)dé)2]+(1_wz‘)
Apply part (1) of Lemma A.7:
3 W'Y ZLéf (8 >[ o{ ~ T5(8)c0v; (95,85 (9), [5h(6))”

j
_takmgdwcov;gg QUO)P) + - ool (g (02,8 (8), [g) 2}

+2§ /7( (6,0;8,8)¢(9)d ){ £g',(8)cov’ (3 mgjé ,85(6))

—takmgd< )cov! (gh(8), gh(8)) + - covy (gh(8)3%,.,4(8), 8h(6) } |
= Z|| 08 T Tillew < wingz[{M3+M3 +M3} +2M{M2+M2 +M2H = 30w/ 2RMP

Apply part (2) of Lemma A.7:
3, T0(0) = 'Y lL@tgdu[ ¢{cov!] (3%, Inlgh) (0), 24 (O)]) }

j

424 ( L [ 1(6,054(8)40) {conf{ (3, Inlsl) (0), 3(8))}] +wf21f;LafcovZ[gué),gé(é)]

= LlPgnT* drloosmt[a{ﬁ}um{ﬁ}]+w'<;tM2 3thM WM

Apply part (3) of Lemma A.7:

96, T W'Y yLa <)[ ¢{ covl](3%,,C1(0), [h@)1) |
j

+2¢ / )8h(8)dd) { covl](3,,CL(0), $5(9)) }]

= L REn T hlls < 't [C{ 21+ 2gm{M}] = Bwigim?
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For part (4). Directly apply the chain rule
%l T zwz/x (8,0) [7(5(9) — 85(6)) (2%,84(8) — 0% ,8)(6)) | a0
= 2||a [Tl < (1 —oL)2EM.
. 27”;/7(30(9/9) 9%, Ing))'(9)] a0

1
= ol TNl < -1 >M
0)o

T Z’Y”Z/X @

:>Z||a [T Hoogl—z

Cl(8)dd

O]

Proposition A.4. Given wages, {w;}, assume {®)} have bounded support that is contained in

[—M, M] for some M > 0 and have associated density functions c. If {F < 1/M?, F < 5+ and
¢ > ¢, where ¢ > 0 is a constant determined by parameters (T, T, 17, M, v") detailed in the proof,
then an equilibrium uniquely exists and satisfies all properties stated in Proposition A.3.

Proof. Denote G = {g : [-M, M| — RN*S; ¢ is differentiable; ||g|lo < M; [g']/(9) €
M/, M'],vd,i,8}. Denote C = {C € CO([-M,M] — RN*S) : |[C|le < MC}. Denote
X = G x C. Endow X with the C! norm of § combined with the C’ norm of C: ||(g,C)||x =
1gllco + 1|§'[loo + [|C]|co- It can be verified that X is a complete metric space with the norm
-1l

Define 7 = ('Tg TC) mapping from X’ given by

(T%(8,C)]i(0) LL/X (8,6;8,C)gh(B)d + (1 - ')

T (8,C)14(6) = Ing) - Z”ln (X [ ek exp (~2ck@) exp (- 56H64(0) ~ 1)) el @b @)00),

where g’ is viewed as an operator applied to g, and to slightly abuse notations, yx is redefined
below to highlight its dependence on (g,C):

(1)) Cexp (—2Cl(8)) exp (—%a(g;(é) gh(8 >
"L St e (~2Ch(@)) exp (~32(g}(0) — gh()
Part (1) of Lemma A.4 shows that 7 (g,C) € X.

lel \/
\_/

Cbu .

~—

el

o,

—~

Du

~—

Q.

Du
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Consider V(g,C) € X, (§,C) € X

IT(8,€) = T(&C)llx
= 78(8,C) = T#(8,C) I + [T5(8,C)) — [TE(&,C))'lleo + I T°(8,€) = T(&,C)lles
< (Ek 195, 7| + Ek 19, T[] + Zk 195, TN g — &l

(19, T8N+ Y 110 T 11+ 3 1105, TE I8 — &'lleo
mk mk m,k
+ (106w TN + L 106w T 11+ 3 198, TEINIIC —Clloo,
m,k mk m,k
where the second line applies the definition of || - || v, the third line applies the mean value

theorem for Fréchet derivatives,® and 7¢,7¢, 7€ are the operators defined in Lemma A 4.
From the estimates in part (2)-(4) of Lemma A .4

1T(8,C) = T@C)llx < Olig —&llew + Qllg’ —§'lleo + Q€ —Clles,
where Qg = w[sngZ n 1} + 3WPRM? + (1 — 91)2tM, Qp = DM | 30028M | oreM? +
(1—-9 )1 =, Q¢ = WIM + 3w’ tM? + 1 — ’yL. Since it is assumed that 2tM <10 =
max{Qy, Oy, O¢} is thus increasing in @ and 5‘ = (1-1%) < 1. Choose any Q" €

(1-— lL, 1). Since @w = max; (17(111)1()1(—7’2)t)+¢ which is decreasmg in ¢, 3¢ > 0 such that for all

¢ > ¢, Q < O. We thus have found ¢ such that forall ¢ > ¢, T is a contraction mapping
with the norm || - || v with a modulus Q°. The existence and uniqueness of the equilibrium
then follows from the contraction mapping theorem.
Since the conditions stated in Proposition A.3 also hold, we have that the unique fixed
point also satisfies the properties stated in Proposition A.3.
t

Lemma A.5. For x defined in (A.9) and any function f,(0) we have

Y [ 36x),(0,0:8,8)£ul0)80 = gi) (B)cov] (5(6), £o(6)),

where covi{ is the covariance taken under the distribution )(go(é, 0; g.8) across (o, 0).

3This can be shown as a corollary of the Hahn-Banach Theorem, see e.g., Theorem 1.8 of Ambrosetti and Prodi
(1995).
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Proof. For simplicity we omit g, g’ in the arguments.

/agx 0,0)f,(8
~ 2 [oaindl,(0,0)- Xdo(é,é) f2(6)dé
=2/ { - aHsh +2/x (6,0 27(s5(0) — 3(8))] 4B} - (51 (8) - (] (6,6 o (8)
= ¢l @ T / $4(0) — 8h(8))fo @)}, (6,)d8

Z/gd (8))x,(9,6)d0) Z/fo )x},(0,6)d8) }

= —1lg3)' (0)cov} 540 gé
= (1] gd '() covd gé

Lemma A.6. For X{i (6,0) defined in equation (6) and any function f,(0,8) we have

/aexdo (0,0)f,(0,0)d®}(8) = —F - covl, (0 — B, £,(6,0)),

where cové is the covariance under the distribution X{i ,(6,0) across (0,6).

Proof. Consider
L [ 30k 6,0)1,(6,6)d0L(6)
= % [ 20 (6,6) x5, (0,0)£:(0,6)40%(@)
=% [{-eH0-0)+ X [ xale.)[cF0 ~8)]a0i@) } -2, 0,01, (0.0)00}@)
= ~GH{ L [0~ 0)7:(6,021,(6,0)40}0)
-(Z / = 81, (0,0903(8)) (X [ (6,81, (0,0)d04(®)) }

= —(F- covd(G —0,£,(6,0))

Lemma A.7. For x defined in (A.12) and any function f,() we have

(1) Zofagm)(dg 9 G)fo( ) é = _C{ iTgd(e_ COUd mg] (
— 19§ 118} ()covy (g5(8), £o(8)) + F- cou] (g5 (6)%, .25 (6), fo(8

(2) T, [ 0k, x00(8,8) fo(8)df = _ngg'(ak n[e)]'(8), f é)
(3) Lo J 3 ), (8,0),(0)d6 = —geoo]] (95,,CL(0), £,(0) ).

o)
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Proof. For part (1),
Z/agmxglo 9 9 fO( ) N
=L [ %0 xi,(8.0) - x4, (0,0)fu(6)a0

For part (2),
Z/agmxdof“’fo() 6
_Z/a LInxl (8,0) 1 (8,8)f,(8)d0
= 0L [ o nlsll €)= X [ 1050, [0, i) @] ad ], (0,0) 7o 0)a6

— —Ccovd (ak, In g{,]l( , o )
For part (3),

/amedO (0,0)f,(
— 2/5) WInxl(8,8) - 1] (8,6)f,(0)d0
:_gz/ {9k,,CH(8) Z/X (6,8)[3%,,C1(8)] 40}, (0,0 £,(6)a0
= —Ccovy (3,,CH(0), fo(8)).

A.3 Proof of Proposition 3
We state the proposition in full by writing out the coefficient matrix explicitly.

Proposition 3 (Full). In the equilibrium of technology choice under degenerate endowment distri-
butions:

18



1. The technology chosen by firms in (d, i) is

Od =w Z ZLXZU +(1— wi)éél,

sy Lepi _piy2
(7—1)(1—iL)F i exp[—g(lnrgo+1nc{,+§t(ed_eg) oo
== and = , . —— is the share of sector-
-1 (A—70)Fg 111 Xdo ¥, exp|—{(Int) ,+InC),+ 3(6,—0/,)?)] ‘ f
j input spent on country o by intermediate-good firms from (d,i). Thus, 0} is a weighted

average between the firm's endowment technology 0% and the endogenous technologies of its

where W' =

suppliers {6)}.

2. Let C = (C},C3,...,CY,) denote the location parameters of factory-gate price distributions
(i.e., the degenerate special case of the location parameters defined in (5)). Then between two
equilibria with different trade costs and technology choices:

dInC = D;Q[fAd6 + dIn 7]
We use D, to represent an NS x NS diagonal matrix with the diagonal elements being the
entries of the NS x 1 vector x.
¥ = (9,9, 73) with 7, = 1 — 4L Q = [Insxns — Dy~ is the Leontief inverse of

the expenditure share of sourcing, with T djo = 17;& ';]0 dé = (do},de?,...,deY). dInT =

(dInt{,dIntf, ..., dInty) with dInTj = ¥, T ] dlnT , being the expenditure-weighted
average changes in import trade costs of (d, i). And A is an N S x NS matrix of expenditure-
weighted average distance in technology between trading pairs: A = D, 9 +1T'Dg —
DyT.

Insxns—T

3. In response to changes in trade costs {d In Téo}, firms change their technologies according to:
d8 = —{[Insxns — Do (T — ZEADSQA — JFA)] ! [Dwf\Dn;Qd In% + Dwdlnﬂ,
where w = (wl,W?, ..., w§,) with W' = w' defined in (23). A isan NS x NS matrix whose

elements (indexed by ((d, i), (0,]))) are Al =T [6] — L5 %101, the expenditure-weighted

do~ ol

average distance between (o, j) and all suppliers of (d,i). A = —Dz, + ADg — DgA. And
dInT = (dIn7},dIn7},.., dInTy) withdInT) = ¥;, A InT), .

Proof. For part 1, since all firms in (d, i) has ex-ante technology @', they solve
max[1 — ¢(6,6;)][C4(6)]' 7,
where, with C_é = Cé (Gé),
; . =G
Ch(0) « [T(T [ Chexp(3E0 —0))] )7
j 0

Plugging in the functional form and taking log on the objective gives

—1(6—07)2 — 127 Y7 In(Y_exp[—¢(Int, +In C} + 1E(6 — 6)))).
] [
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FOC w.r.t. 0 reads

j j
B0 — )+ (1— i expl={(nT), +InC) + 1E(0 - 65)2)]
P ]7)1;0;7 Lo exp|—{(In Ty, +InC), + FE(0 — 6],)2)]

Therefore, the technology choice of firms in (d, i), 6%, should satisfy

G0 — ) = fZ’Y”X;]o 0})

= (1—=n)t (1—7 th”X” 6,
where the share of spending by firms in (d, i) on 0 when sourcing j
Xij _ exp[—g(ln“fiol—i— In C_£ —|— %f(@é - 9{;)2)] .
Yy exp[—{(InT), +InC), + 3E(6], — 6/,)?)]

Rearranging gives

o i .
0 = 'y WVILXZ{OG’] +(1-wha,

where
i =D =oE
(1 =)A=+
For part 2, holding wages constant, totally differentiating In C}, gives

dinCj = Y- ~"x}, |dIn C + (6 — 05)d (6 — 6)) +dIn), |
j0
= (1= 9"y + (1 - 7")[QdIn 7,
with

2r )d(65 —6)),

and dIn 7 defined in the proposmon. Consider

Q) =Y Olh, 2rkh o0k — oMy (dok — dem)
mk

Utilizing 8 0 d@ = Dy - d@ , we write the four terms:
ZQ rkh ok dok = [QD,d6],

2 mZF’;fnehdek [QDred6]!

mk
Yy o) Zrkh 6kd6l = [QDeId6])
mk
Yy 0 mZF’;fnehdeh [QT Dyd6)).
mk

20
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Therefore,
dInC = D5Q[fAd6 + d In F],

with A defined in the proposition. )
For part 3, totally differentiating In ¥/} :

din g, = =¢{dIn}, +dInCh+ (6] — 03)d(6] — 6}
Z ¢/ [dInt) 4+ dInC] + (6], - eg>d(9;_9g>]}
Therefore,

7Y _if pj i Y _ij nf =j 7] -l] ij n =]
Z 1— r),ZLXdOG dlnXdo g{ Z 1— ,),zLXdoe dlnC Z 1Lxdo Zxdog dln C5
1,0 1,0

+ Zj ILXZOGJdln Tho — Z ZLXZ{O ZX” 6))dIn T},

]}5

+2 m@) F(65 — 6))d (6" — 6))

i P
L TR RG] T~ 6h)d(6) — )}
= [—@’Ad InC — {dIn7T — JFAdE]},

for A,dInT, and A defined in the proposition. Hence,

dé,) = w Z L)(do 6]dlanijo +de))
[ {AdInC — {dIn% — CFAdE], + ' Zr” 4o’

— _{w [AD,yﬂ[tAdG +dIn®]+dInT + tAde} + 'y T d6).
] 0
Therefore,

d0 = —[I — Do (T — ZFAD;QA — ZFA)] [D“,ZN\D,yﬂd In% + Dwdlnﬂ .
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A.4 Proof of Proposition 4
Proof. Slightly abusing notation, we denote the change in the trade cost as d In T’Z).

do; = w' Y 7 X;]O, d9] —I—G dln)(do,)

jo

= w' Z /)/l] Xzijo’

jo

=0 noting the assumption implies Xﬁ =0
— W Z Vi 27 00, [dIn G, +dintd, + E(6] — 6,)d6!, — (6, — 6/,)de) ]
/ N— ,—/ N——
i
=0 =0

+ lw Zyif/;zdo, Z?Cd dlncf +dInT} + F6 — o/ J,)de, — F(0! — o/ )def ]

& % R
—gwiyix] gldinT] — o' Zw X6l (6} — egﬂ)]deg
] o'
+Cwl'y”xl] ZXZD,G] dlnT |+ (k! Z’y” )(do, Zxdjm(?] )]dé;,
j'e'
—wiyiix] 0] — Z X1 6l)dInTl + CFw' Zw X160l —Y %7 ol,]de;
i~ m

effect due to the change in 9; through trade shares

Hence,
— gyl 0) — Yz 6h)dInT!
1= ZE! Sy Y Ry O 10 — Lo O]
gwiyiz 16) — oY dinT),
1— w0 v % 6], — 0 || 6h— o]

The second equality holds because

Z’Yﬂ/?(;]o'z XIJ 91 91 Z Xl] 91

e’
= Z’)’ijl ZXZO’QJ ZXd]mej Z,)/Z] Zxdo’ [Zxc{mgj }
]/ 0/

=0.

do), =

Recalling that A6} — 9] | ~ Lo Gé,)(d% - d@i/) x x, and d9£/ = 0 by (d,i) being

2
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small, we have Vo', 0

, ) inij o — & oi _ o
N Ep— v 1L kSR . S0
1—t§w12]-/0/ l]XdO/HQ —19 || 90—19{1
. . ij 9] 8 91' 9f
AHG‘Z} —QZ)/H _ C(U Y Xdo” ]H o ] : % x.
1-— th Zj//()/ l] XdO’HO — 19 H 9 19
It follows that

A6y — 6] — )Xy Dl6; — 6L
0/

Gy TR, 10 = 94| x : -

- 7o - i’ iy z] ZX;{O' i —60)]

1-Hw 2‘/0/’)’]?(,10/”9 -0, 6,— 19d

ij ij 9] ’] B .

S e L R e )

1—flw! Z]-,O/'y]xdo,HQ =0, 6,—19
A

1_t€w Z] o”)/JXdO/HQJ _191] H
where the denominator is positive by the second-order condition of 6. O

A.5 Proof of Proposition 5

Proof. From the first-order condition, for

i _ (7 — ij 5t ¢ )
Qd(v) - (;7 _ 1)(1 _ zL t+4) Z’ijd]" (17 — 1)(1 - ’)’iL)f—i-‘l_)e(V)
_ (p=1F
(=11 -9LE+¢
i expl-Z(nt) +InC)+ 3O (v) - )M $ 3
%7]20, exp[_g(]n’(do/ +lnC +% (9 ( ) . 92/)2)] 0, + (17 — 1)(1 — /)/zL)[T_|_ 4_)9(1/)

Totally differentiate 6 and Xgo(é)) w.r.t f(v) around 6’. Since only one firm is deviating,
all aggregate outcomes will not change.

W) = () g DO ST A0 000
<]_> _
ERCES YR el
¢
- d@fi(l/) _ ( (’7 1)(1—L)i+¢ if” )dé(l/)

(7 S 1ol
1—mzjo’)’ XaollOo —

where the denominator is positive by the second order condition of firms” optimal 6',(v).
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Therefore,
d[]|6(v) — 65l — 1165 (v) — 6,1
= —2d6j(v)[6; — 6},],
whose sign agrees with —2d8(v)[6} — 6/,] = d[||6(v) — 65| — ||6(v) — 6., ).
The rest of the proposition follows from the following expression:
(1) = exp[—(Int), +InC} + (6 (v) — 6))%)]
a0 Yy exp[—¢(Intl, +InCl, + K6} (v) — 0/,)2)]

A.6 Proof of Proposition 6

Proof. We suppress the location index for now. Normalizing wage to 1, household nominal
income [ in the decentralized equilibrium satisfies:

1 4 T
T=14 L o Texp(~ 190 )
i
1
L= Lip'exp(—3(0 — 6)7)
And the household utility in the decentralized equilibrium is

L
PI

:}I:

U

where

In(P) = cons + Zpi In(CY),
Zv” In(C +Z (e - 07)?
= In(C") = % ZO”” Z'y"” F— 0]
= In(P) = cons + th ZQ”” Z —0/)’]

where Q" is the (i, m)-th element of the matrix (Isxs — I')~!, with T = 4/, which charac-
terizes the GE influence of }_; 7"/ (6" — 67)2 on In(C").
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The first-order derivative of In(U) w.r.t. ¢ is given by
Lol exp(—1(6 — )?)
1— o Yip exp(—3¢(6" — 8')2)

GO —0") —Fo' ) QMY M (0"— 0] —F) 0 Y Y [y"(0" — )]

j jAEe
1, 1700 _ 3i\2
P P390 =07 i gj im,mji _FN" i(gi _ g jim  mi
= —le.piexp(—l@(ei—éi)Z)‘P(e —0') —Tp' Y (0"~ 0) Y Q" Y o/ (0~ 0) ) "y
= 2 j m j# m
— —
E,7/1']' E’?ﬁ
1, 1700 _ gi\2
~p'exp(—5p(0'—69)) . L S
i i i i ~1j (gl ~ji(pi
= : — o P00 =0 — ") (0" —0)) —F) V(0 —¢)
1— 0 Yip exp(—34(6" — 67)2) ; ,;
i eXP(_%_(ei—gi)z) < (i i I\ &if(pi ‘ 7 i ~ji (i '
i : (0 —0) — 1) (6" —0)] - 1) p¥'(6'—0) (A13)
1= Lip'exp(—,§(6'—0)?) ; ;
This proves part (1). ‘
For part (2), note that the decentralized 6' satisfies
Wilqswi o) = FY_ (6 — 00), (A14)
j

which implies that 6’ falls between § and §/. WOLG, assume 6 < 6/ < 6/,
Plugging (A.14) to (A.13) delivers

i eXP(—%GI_’(ei—éi)z) _ iirni iy _ N &iifai _ pi\l _F icjiicni _ nj
P pexp(—Lg@ — ) T VO =) — RO =00 —EL e 6.
1

o — L& —gi)2
° P( 24)((1 _0? )_} < — 1. < L under the assumption
T e Liptep(—p0 =002 p-Liplexp(—@(0'-0)2) T
that ' < 0" < 6/, we have
g ORI —0)?)
P L e (07— 6)2)

> ) (6 —0) =) 7 (6"~ 0)] —T)_pl¥' (6"~ &).
7 7 7

Noting that

(1= DL~ 0) = L6 0] - Tl (6~ )
] ] J7t
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Since input-output coefficients are symmetric across all sectors,

.. A 1 i
Vj #1i, - = = —
J s J=1 Yy

j#i J#i J#i
= (T - L =L e)
7 7 Ljzi 1
(ijéi ’Yij) T %l ;
=== QY — =)
(X2 7) ]; ]; Lj#i 7
0l Z ~ij(gi _ gi
=) 7' —¢)
7 i
— sign()_77(6' —6/)) =sign(})_77(6' —6/)) and | ) 77(6' — 6')| > |} (6" —0))]|
j#i J#i j#i J#i

From §' < 6/ < 12_ 11 0/ and the symmetry in input-output coefficients, we have

sign(z'yif((%i — Oj)) = sign(Z(Qi — Gj)) = sign(ij'in(Gi — 9j)) < 0.
]

j#i j#i
It follows that
PHE (6~ 0) — Y 7(6' — 6)] ~ L o7 (6~ 01) > 0.
j#i j#i j#i
Thus, the marginal effect of increasing o' on the social welfare is positive. In the case of
6' > 6' > 6/, we can prove that decreasing 6 increases the social welfare analogously. ]

A.7 Proof of Proposition 7

Proof. Suppose there are two symmetric countries, denominated by 1 and 2, and only one
sector. We suppress industry indexes i and j. Denote Tjp = 71 = 7. Impose 711 = T2 = 1.
WOLG, assume 0, < 0 < #; and that |6;| = |0,].

The symmetric setup implies that in the decentralized equilibrium, the two countries
have the same nominal wage, which we normalize to 1. Moreover, 6, < 0 < 60y, and |6;| =
|61].

A marginal increase in 6, affects the economy through two channels. First, some of the
net profit in country 2 is now expended as innovation cost, which affects the welfare of
country 2; second, the distance between 6, and 6, decreases, which reduces the production
cost in both countries. Note that the innovation expense and household consumption have the
same composition of domestic versus imported goods, so if the wage and production cost
in both countries remain the same, the demand for the goods produced in the two countries
will be the same. Further notice that if the wages are the same, the reduction in production
cost due to the decrease in distance between the two countries will be the same, meaning
that symmetric wages will also clear the market after the change. Therefore, throughout the
subsequent analysis, we can normalize the wage of both countries to 1.

Below we first derive analytically household welfare under the decentralized equilib-
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rium. We then show how it varies with a shift in the location choice of one of the countries.
For d = 1,2, household nominal income I; in the decentralized equilibrium is given by

1 _ ~
Ii=1+ ﬁld exp(—39(04 — 04)°)
1
1— o exp(—3¢(62 — 04)%)
Following Proposition 3, the technology choice of firms in country 2 is
g, — 1= D7)t
(7 =11 =7"E+¢
with analogous expression for country 1 and
(Texp(3E(62 — 01)%)) ¢
(Texp(3E(62 —61)2)) ¢+ 1

The symmetry of ¥ stems from the symmetry of C;, following the symmetric assumption of
the two countries.

a1+ (1= X21)02] + ¢ — 1)(14i TR

X1 =X12=X

’YL

Cr=Cr=Co (w) - C" [(Texp(3E(62— 61)%)) ¢ + 1]_1%
'YL

—_

1ot
— Co[(Texp(3(0,—01)2)) € +1] + fand P o C(1 411 71)T7.
The welfare of household in country o in the symmetric setup is
1

1-Lexp(~ 5¢(65—01)?)
1 L

(rexp(H(Bs — 0-0)2)F +1) 7 Lo (L4 7o)

The welfare effect of a marginal increase in 6, on U is

leoc

1 15 0,)2
S~ ot e e
L oxp(—1(6; — 6,)2
(noting that E fjp(z—(z(;zez 22;2) <3 . 7)
’7114_’(92 —02) + £ _LIYLX(Bl —02)
g 771—143(92 —02) +E(1 = 7")x(61 — 62)
=0,

where the last line follows from in equilibrium %4_7( h —02) = F(1 — 4B x (6, — 62).
Also,
olnlly . 1—~F

90, - e

x(6 —62) > 0.
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Appendix B Reduced-Form Evidence

We discuss the details for our reduced-form evidence in this section. Section B.1 introduces
the data sources, dataset construction, and cleaning procedures. Section B.2 provides vali-
dation exercises for our text-based measure on technology similarity. Section B.3 introduces
details in constructing the measure of compatibility intensity for each industry. Finally, Sec-
tions B.4 and B.5 present additional robustness checks for our reduced-form results.

B.1 Data

Our dataset is built from four main sources, the World Input-Output Tables, patent data from
the PATSTAT Global, Chinese firm-level data, and tariff data from the TRAINS database. We
explain in detail where we source the data and how we construct the final datasets.

World Input-Output Tables (WIOTs). Our multi-country analyses center around coun-
tries in the WIOTs (Timmer et al., 2015) sourced from the World Input-Output Database (2016
Release). To facilitate analysis, we classify all countries in the WIOTs into 29 regions based
on their geographic and political proximity. Table B.1 lists the regions.

Patent Data. Our patent data are sourced from the PATSTAT Global (the 2023 Fall ver-
sion), a comprehensive database comprising bibliographical information on over 100 million
patent documents. This database encompasses patent records from 90 patent-issuing au-
thorities, including all major national (e.g. USPTO), regional (e.g. EPO), and global (e.g. the
Patent Cooperative Treaty) patent offices. To focus on production technologies, we narrow
our focus to invention patents and utility models while excluding design patents from our
analysis.

Throughout our analysis, we define a patent as a patent family, which typically protects
one invention. An invention can be a new product, a new process to produce, or a new tech-
nical solution. A patent family can involve multiple patent applications when this technology
seeks patent protection from different authorities. For each patent, we denote its year of in-
vention as the year in which the first application is filed. We keep those patents with at least
one application granted.

Each patent record contains details about the inventors of the patent (the individuals who
invent the patent, though not necessarily the applicant or the owner of the patent) and their
countries of residence. We first map the countries into the geo-political regions and take all
these regions as the regions of invention of that patent, assigning weights to each region based
on the number of inventors from that specific location. For example, if a patent involves
five inventors—two from China and three from the US—we consider that China holds 2/5
of the patent, while the US holds 3/5. In case where the inventor information is missing,
we designate the region of its first application as the region of invention. This assumption
is grounded in the idea that a patent would typically be filed domestically before seeking
international protection.

Chinese Firm-Level Data. Our firm-level analysis focuses on Chinese manufacturing
firms in the Annual Survey of Industrial Enterprise maintained by the National Bureau of
Statistics of China (NBSC). The dataset offers a yearly census of all state-owned manufac-
turing firms and all non-state manufacturing firms with sales greater than RMB 5 million
(approx. US$600,000) over 1998-2014, including plant-level information on industry, loca-
tion, sales, employment, etc.
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Table B.1: Geo-Political Regions

Region Code Region ISO3 in WIOTs

AUS Australia AUS

AUT Austria AUT

BLK Balkans BGR, HRV, GRC
BLT Baltic States EST, LVA, LTU
BNE Benelux BEL, LUX, NLD
BRA Brazil BRA
CAN Canada CAN

CHE Switzerland CHE
CHN China (Mainland) CHN

CNE Central Europe CZE, HUN, POL, SVK, SVN
DEU Germany DEU

ESP Spain ESP

FRA France FRA

GBR United Kingdom GBR

IDN Indonesia IDN

IND India IND

IRL Ireland IRL

ITA Italy ITA

JPN Japan JPN

KOR South Korea KOR

MEX Mexico MEX
NRD Nordic Countries DNK, FIN, NOR, SWE
PRT Portugal PRT

ROU Romania ROU
ROW Rest of the World CYP, MLT, ROW
RUS Russia RUS

TUR Turkey TUR
TWN Taiwan TWN

USA United States USA

Crucial to our analysis are a firm’s identity (w) and the prime industry (i) it belongs
to. We link each firm consistently over time using information on the NBS ID, firm name,
the name of legal person representative, phone number, address, name of main products,
founding year, etc. To investigate the input-output linkage, we manually map the industry
codes to the 3-digit industry classification used in the 2007 Chinese Input-Output Table.

To link Chinese patents to their patent portfolios, we use as a bridge patent application
data provided by China’s State Intellectual Property Office (SIPO). For each firm in the SIPO
data, we link it to firms in the NBSC database by matching the names (in Chinese). We then
trace individual patents in SIPO to patents in PATSTAT using application numbers that can
be linked between the two databases. With this link, for each Chinese firm, we observe its
global portfolio of patents, and their (forward and backward) citations with other worldwide
patents.4

“For this bridge to work, our assumption is that when Chinese firms file a patent in any foreign office, they
also file for a patent for the same invention in the SIPO. The reason we use PATSTAT, instead of the SIPO data
only is that the former allows us to measure citations and similarity between Chinese firms and worldwide
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Finally, we obtain information on firms” imports from China’s General Administration of
Customs, which provides detailed records on the universe of all Chinese trade transactions
by both importing and exporting firms at the HS eight-digit level for the years 2000-2014.
We merge the import data with the NBSC manufacturing firm survey data. The matching
procedure consists of three main steps: (1) match by company names (in Chinese); (2) match
by phone number and zip code; (3) match by phone number and the name of contact person.

Our final firm-level dataset includes all manufacturing firms with patents, regardless of
whether they import goods from abroad. The panel is unbalanced with the number of firms
increasing from 57,465 in the period 2000-2002 to 102,153 in the period 2012-2014.

Tariff Data. We source tariff data from UN TRAINS, which are downloaded from https://
wits.worldbank.org for each year between 2000-2014. The raw data include the effectively
applied tariff rates and MFN tariff rates at the importer-exporter-product level, where im-
porters and exporters are in three-letter ISO country code, and products are at the level of
6-digit HS code (2007).

When cleaning the data, we drop all the observations where either the importer or the
exporter is unspecified. For both the applied and MFN tariffs, when the observations are
missing, we impute them with the first non-missing preceding tariff. If no earlier observation
is available, we leave them missing and drop these observations in our regressions. Finally,
we aggregate the tariff rates from yearly figures into three-year periods by computing simple
averages.

B.2 Technology Similarity Measure Based on Patent Texts

Case Studies. In Section 3.1, we construct a measure of technology similarity based on the
closeness of patent texts. To validate that our patent-based semantic similarity captures the
level of compatibility between related technologies, we examine several cases of production
of final products that have similar functions but follow different technological paths, which
thus require different upstream technologies to be compatible.

Table B.2 shows the similarity scores between the IPC subclass (IPC4) of patents used
by the production of a final product and that of its intimate upstream industry, averaged
over 2000-2014. For the first example, the automotive sector, the technology class associated
with electronic vehicles (B60L) has a similarity score of 0.81 with that of battery technology
(HO1M), while it has a similarity score of 0.78 with that of combustion engines (FO2M). In
contrast, the technology class associated with traditional fuel vehicles (B60K) has a similar-
ity score of 0.74 with that of battery technology (HO1M), and a higher similarity score of
0.87 with that of combustion engines (FO2M). This matches the natural technological fit be-
tween different energy-based vehicles and the fundamental technology for converting the
corresponding energy to motion.

The other example involves the technology transition from Cathode Ray Tube (CRT)-
based display screens to flat panel displays (LCD and OLED). CRT technology (HO1J) has a
high similarity score (0.92) with plasma physics (HO5H), reflecting CRT’s core dependence
on electron beams. In contrast, flat panel displays (GO2F) show lower similarity with plasma
physics (0.67) but higher similarity with organic electronic devices (H10K, 0.85). This aligns
with the fundamental technological differences between CRT and flat panel displays: CRT

patents that are not covered by SIPO.
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Table B.2: Similarity Scores Between Selected Technology Pairs

IPC4 of input using technology IPC4 of input supplying technology Similarity

B60L (Electric Vehicle) HO1M (Battery) 0.81
B60L (Electric Vehicle) FO02M (Fuel System) 0.78
B60K (Fuel Vehicle) HOIM (Battery) 0.74
B60K (Fuel Vehicle) F02M (Fuel System) 0.87
GO2F (Flat Panel Display) H10K (Organic Display) 0.85
GO2F (Flat Panel Display) HO5H (Plasma Tech) 0.67
HO01J (CRT Display) H10K (Organic Display) 0.78
HO01J (CRT Display) HO5H (Plasma Tech) 0.92

Notes: This table presents similarity scores between embeddings of downstream technologies (first column) and their corre-
sponding upstream technologies (second column). The table is divided into two panels demonstrating different technological
paths. The upper panel contrasts electric vs. fuel vehicles in relation to their key input technologies (batteries vs. fuel systems).
The lower panel contrasts display technologies (CRT vs. flat panel) and their associated manufacturing processes (plasma tech-
nology vs. organic electronic devices). Each similarity score represents the cosine similarity between the average embeddings
(over 2000-2014) of the technology pairs.

Table B.3: Examples of Technology Description and Embedding-based Similarity

Textl Text2 Sentence Embedding  TF-IDF
(Input using) (Input supplying) Similarity Similarity
Electric vehicles need batteries, Batteries power electric cars, 0.77 021
not gas engines not gas cars ' '
Electric vehicles need batteries, Gas engines power gas cars, 076 021
not gas engines not electric cars ' '
Gas cars need engines, Batteries power electric cars,

. 0.70 0.21
not batteries not gas cars
Gas cars need engines, Gas engines power gas cars,

. . 0.75 0.21
not batteries not electric cars

Notes: This table presents examples of technology descriptions and their similarity scores calculated using two different meth-
ods: sentence embeddings and TF-IDF. The descriptions represent technologies related to electric and gasoline vehicles, along
with their upstream components (batteries and engines). The last two columns report the computed similarity measures for
different technology pairs under the two methods.

relies on electron beams in vacuum tubes, while flat panel displays use solid-state electronic
control. These examples demonstrate that our semantic similarity measure captures mean-
ingful technological compatibility relationships along production chains.

To illustrate what information the sentence embedding method encodes in terms of ab-
stract semantic relationships, and to demonstrate its advantages over traditional word-count
based measures like TF-IDF (used by e.g., Kelly, Papanikolaou, Seru and Taddy, 2021) for
capturing degree of compatibility between technologies,5 we construct an example of tech-
nology descriptions of electric vehicles (EVs) and gasoline vehicles, along with their respec-
tive upstream technologies: batteries and combustion engines. Table B.3 reports the example
descriptions, and the similarity scores calculated for different technology pairs under differ-

STE-IDF (Term Frequency-Inverse Document Frequency) is a numerical statistic that reflects how important
a word is to a document. It combines how frequently a term appears in a document (TF) with how unique that
term is across all documents (IDF). Words that appear frequently in one document but rarely in others receive
higher TF-IDF scores.
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Table B.4: Average Similarity Across Different IPC Levels

Classification Level Average Similarity
Within same IPC subclass (IPC4) 0.40
Within same IPC class (IPC2) 0.33
Within same IPC section (IPC1) 0.31
All sample 0.29

Notes: This table is based on a sample of 10 patent abstracts from each IPC4 subclass, drawn from U.S. patents in 2014, totaling
5,616 patents. Bilateral cosine similarity scores were calculated for each pair of patents (excluding self-similarity), and the
average similarity was computed for patents within different IPC levels.
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Figure B.1: Validation Checks for Technology Similarity

Notes: All figures are binned scatter plots. Figure B.1a plots the average similarity against the input-output weights between 2-
digit industries i and j, controlling for i and j fixed effects. Figure B.1b plots the average similarity against the log of geographic
distance between countries d and o, controlling for 4 and o fixed effects. Figure B.1c plots the average similarity against the log
of citation flows between (d, i) and (o, j), controlling for d-i, 0-j, d-o and i-j fixed effects.

ent methods.

The example descriptions intentionally include both positive and negative statements,

which are common in patent abstracts to delineate a technology’s applicability. The re-
sults show that sentence embeddings successfully capture the technological compatibility
relationships: they assign higher similarity scores to naturally compatible pairs (EVs with
batteries, gasoline vehicles with engines). In contrast, the TF-IDF method assigns identical
similarity scores across all technology pairs as it relies solely on word overlap rather than
semantic meaning.

These results show that sentence embeddings are particularly effective for understanding

technological compatibility, as they can process and interpret complete descriptions rather
than just individual terms, while word-count based methods remain valuable for other ana-
lytical purposes, such as identifying emerging technical terminology.

Statistical Validation. We now further validate this patent-text-based similarity mea-

sure by correlating it with other factors that are likely associated with technology proximity.

First, we show in Table B.4 that patent abstracts within the same technology class tend to

have higher average similarity, with finer classification levels showing greater similarity.

Second, we show that sectors with stronger input-output linkages exhibit greater simi-

larity than those with weaker connections. Figure B.1a shows a binned scatter plot where we
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regress the average similarity between industries i and j against 7/, the input weight from
i in the production of j, controlling for the fixed effects of i and j. We observe a positive
correlation that is statistically significant.

Third, we confirm that countries in close geographical proximity tend to have more sim-
ilar patents. We show this with a binned scatter plot in Figure B.1b, where the average
similarity between countries d and o is regressed on the logged geographic distance between
the two countries, controlling for the fixed effects of d and 0. There is a significantly negative
correlation.

Last, Figure B.1c demonstrates a strong correlation between our text-based similarity
measure and citation flows between country-industry pairs (d, i) and (o, j), even conditional
ond—i,0—j,d—oandi— jfixed effects. This also motivates our robustness checks using
citation as an alternative measure.

B.3 Measuring Compatibility Intensity

Since the importance of input compatibility may vary across industries, we construct a novel
measure of compatibility intensity for each industry based on the full text of U.S. patents
from the Orbis Intellectual Property Database, which a link full list of patents to global firms.
For each 3-digit ISIC industry, We count the number of patenting firms, and the number of
patenting firms with patents containing keywords ‘compatibility /compatible’ or ‘interoper-
ability.”

We use the share of patenting firms in an industry with such patents as a proxy for the
likelihood that for a random firm in this industry, technology compatibility is important. Ta-
ble B.5 lists the measure for all manufacturing industries at a 2-digit level. In the regressions,
we further map this industry-specific measure of compatibility intensity from 3-digit ISIC to
3-digit CIC industries, denoted as Compatibility; ).

A concern with this measure is that sometimes the two keywords can appear under a dif-
ferent meaning. For example, ‘compatibility” can appear with other meanings such as ‘water
compatibility’, ‘skin compatibility.” As a robustness, we require at least one of the following
words to appear in a patent containing ‘compatibility” for it to be counted as about technolog-
ical compatibility: technology, interface, system, software, hardware, standard, compliance,
protocol, input, output, firmware, plug-and-play, backward, network, modular. This list of
key words is generated by ChatGPT. Imposing this restriction does not materially alter either
the intensity measure or the regression results based on the measure.
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Table B.5: Compatibility Intensity by Industries

ISIC Industry Compeatibility Intensity
21*  Manufacture of basic pharmaceutical products 0.52
60  Programming and broadcasting activities 0.48
12*  Manufacture of tobacco products 0.46
19*  Manufacture of coke and refined petroleum products 0.45
61 Telecommunications 0.42
20*  Manufacture of chemicals and chemical products 0.41
51 Air transport 0.36
63 Information service activities 0.35
26*  Manufacture of computer, electronic and optical products 0.35
58 Publishing activities 0.34
62  Computer programming, consultancy and related activities 0.33
53 Postal and courier activities 0.32
30*  Manufacture of other transport equipment 0.32
18*  Printing and reproduction of recorded media 0.29
32*  Other manufacturing 0.27
35 Electricity, gas, steam and air conditioning supply 0.26
52 Warehousing and support activities for transportation 0.25
29*  Manufacture of motor vehicles, trailers and semi-trailers 0.25
27*  Manufacture of electrical equipment 0.25
24*  Manufacture of basic metals 0.24
17*  Manufacture of paper and paper products 0.24
22*  Manufacture of rubber and plastic products 0.24
59  Motion picture, video and television programme production 0.23
11*  Manufacture of beverages 0.23
10*  Manufacture of food products 0.22
23*  Manufacture of other non-metallic mineral products 0.21
50  Water transport 0.21
13*  Manufacture of textiles 0.21
37  Sewerage 0.20
49 Land transport and transport via pipelines 0.20
33*  Repair and installation of machinery and equipment 0.20
46  Wholesale trade, except of motor vehicles and motorcycles 0.20
36 Water collection, treatment and supply 0.19
39 Remediation activities and other waste management services 0.19
56  Food and beverage service activities 0.19
42 Civil engineering 0.19
28*  Manufacture of machinery and equipment nec 0.18
47  Retail trade, except of motor vehicles and motorcycles 0.18
45 Wholesale and retail trade and repair of motor vehicles and motorcycles 0.18
16*  Manufacture of wood and of products of wood and cork, except furniture 0.16
41  Construction of buildings 0.16
43 Specialised construction activities 0.16
38 Waste collection, treatment and disposal activities; materials recovery 0.15
14*  Manufacture of wearing apparel 0.15
25*  Manufacture of fabricated metal products, except machinery and equipment 0.15
31*  Manufacture of furniture 0.12
55 Accommodation 0.10
15*  Manufacture of leather and related products 0.10

Notes: This table lists the compatibility intensity for two-digit industries in manufacturing and related services (Sections C-K).
Compatibility intensity is defined as the fraction of patenting firms with patents containing keywords related to ‘compatibility’.
An ISIC code with a star suffix indicates a manufacturing industry.
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B.4 Additional Details on Firm-Level Correlation
B.4.1 Input and Output Tariffs

In one of the specifications in Table 2, we control for the input and output tariffs faced by an
industry i in China when sourcing inputs from abroad. We construct these variables from

the effectively applied tariffs.

In general, output tariffs Tag?:p " are defined as the weighted average of applied tariffs that

region d (a collection of countries) imposes on products in industry i from region o (another
collection of countries) in period ¢:

Output _ Z Applied Xd,HSG,initial
doit = Tdo,HS6t ™ ¥ X o
HS6€i HS6' i <3d,HS6' initial

where Tﬁf f}lsiéi are aggregated from the country-pair level by weighing with each pair’s initial

trade shares in the region

Applied __ E Applied XISOd,ISOo,HSé,initial

T = T X )
do,HS6,t 1SOd,ISO0,HS6,t "y
? 1SOded 1SOoco ¢ Y.1SOd'ed 2-1SO0’' €0 XISOM', 100’ HS6,initial

For industry i, the input tariffs T;Zifut are defined as the averaged tariffs a firm in 7 faces

when sourcing inputs from abroad. We construct this measure by weighing the import tariffs
of products from other industries with their input-output weights and initial trade shares:

Input _ Applied Xa,Hs6,initial
Tt = 2 Taohiser X Vij(Hs6) X v X o
HS6¢i HS6'€j(HS) <3d,HSO' initial

where 7; jprs6) denotes the industry-level input-output weight derived from the 2007 Chi-
nese Input-Output Table. Throughout our firm-level regressions (Section 3.2), region d is
restricted to China (CHN).

B.4.2 Extended Gravity

In this section, we provide empirical evidence for the ‘extended-gravity’-like implication on
the relationship between technology similarity and importing decisions. Our theory predicts
that if regions o’ and o are close to each other in the space of technologies, then the technology
similarity between a firm w and o’ would be positively correlated with the firm importing
from o.

To test this implication, we first define the set of technology neighbors of each region d,
which are regions with technologies similar to those of region d. Specifically, we run the
following regression:

Similarity ;;;, = FEaij + €qoit,

where Similarity,,;;, denotes the technology similarity between region-industry pairs (d,i)
and (o,j) in period t. We obtain the residuals from the regression, and calculate its mean
over all industries i and j, which essentially capture the similarity of technologies in region o
to d in period t, conditional on the fixed effects. Then, we define the “technology neighbors” of
region d, denoted with R!*"(d), as the regions 0’s with the averaged residual ranking at the
top 10% for d during period t.
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Table B.6: Extended Gravity

I[Import,,, > 0]

1) 2) 3) 4)
Similarity,,, 0.014x** 0.013***  0.024***  0.024***
(0.005) (0.005) (0.009) (0.009)
Similarity W RN (o), 0.083*** 0.095***  0.156***  (.158***
(0.031) (0.030) (0.046) (0.046)
Similarityw,Rgm (o)t 0.003 -0.005
(0.009) (0.012)
Simﬂarityw/Rzgng(o)/t 0.001 0.003
(0.010) (0.011)
FE w-t Yes Yes Yes Yes
FE w-o Yes Yes Yes Yes
FE o-t Yes Yes Yes Yes
Xi(w)ot Yes Yes Yes Yes
]I[Importw’Riefh (ot > 0] Yes Yes Yes Yes
Observations 3,326,764 3,207,951 2,019,821 2,019,821
R? 0.751 0.749 0.758 0.758

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered by firm. R (d), R8¢ (o), and R'*"*$ (0) represent the
technological, geographical, and linguistic neighbors of region o, respectively. X;(.,),; includes the applied tariffs of industry
i’s inputs and outputs. Industry i’s input tariff is defined by the average applied tariff on imports of all goods from world
region o, weighted by each input’s share in industry i’s production. Industries are classified at the three-digit level of China’s
Industry Classification.

In column (1) of Table B.6, we extend our baseline specification (26) by including the sim-
ilarity measure between firm w and the technological neighbors of 0. Because this similarity
is likely correlated with firm w’s importing from these technological neighbors, and because
importing from different regions can be substitutes of each other, we control for whether w
imports from these technological neighbors. The result shows that indeed, a firm w’s being
technologically similar to the technology neighbors of a region o is strongly correlated with
w importing from o.

Still, it is possible that this result is driven by an information-based story: Firm w meets
a new contact, who introduces to w both the suppliers in 0 and the technologies of o’. Such
knowledgeable contacts certainly exist, but given the language and cultural barriers between
countries, it is more likely than not that their knowledge domain extends to pairs of countries
that are geographically or linguistically close to each other. In columns (2) to (4), we tease out
the influence of such experts by controlling for the technology similarity between w and the
geographic or linguistic neighbors of 0. We define geographic neighbors for a region as those
with the closest 10 percentile distance, and language neighbors as those sharing a common
official language. We find that the coefficients associated with proximity to language and
geographic neighbors do not matter on themselves; more importantly, they do not diminish
the role of similarity with technology neighbors.
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Table B.7: Firm-Level Correlation between Trade and Citation

I[Import,,, > 0]

D ) 3) 4)

I[Citationget > 0] 0.010%** 0.010%** 0.009*** 0.009***

(0.001) (0.001) (0.001) (0.001)
FE w-t Yes Yes Yes Yes
FE w-o Yes Yes Yes Yes
FE o-t Yes Yes Yes Yes
Xi(w)ot Yes
FE p(w)-i(w)-o0-t Yes Yes
Exclude Foreign Firms Yes
Observations 3,426,052 3,349,472 3,361,232 2,517,536
R? 0.749 0.748 0.766 0.729

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered by firm. i(w) and p(w) represent the industry
and province of firm w, respectively. X; ), includes the applied tariffs of industry i’s inputs and outputs. Industry i’s input
tariff is defined by the average applied tariff on imports of all goods from world region o, weighted by each input’s share in
industry i’s production. Industries are classified at the three-digit level of China’s Industry Classification.

B.4.3 Using Citation as an Alternative Measure

Researchers often use patent citations as an alternative measure of technology similarity.
Although we have chosen the text-based measure of similarity as our preferred approach,
Table B.7 replicates the baseline result in Section 3.2 using citations, showing its robustness
to this alternative measure.

B.5 Additional Details on Tariff Variation and Technological Choice
B.5.1 MEFN-Binding Tariffs

In Section 3.3, we instrument the effectively applied tariffs with the exogenous tariff changes
from binding MEN tariffs. To construct this instrument, we first construct ‘pseudo” MFN
tariffs using the applied tariffs in the initial periods and changes in MEN rates at the country-
product level:

t
=MFN __ __Applied —~ MFN
T1S0d,1500,HS6,t = T1S0d, 1500, HS6,initial T~ 2 AT150d,1500,HS6,t
t'=initial4+1
where the changes are defined as the interaction between the changes in MEN tariffs and an
indicator for whether the MEN tariffs of d applies to 0 in both period t and t — 1:

—~ MFN [

_ Applied MEN Applied MFN
T150d,1500,HS6,t = 1 | T duser| X1 |T

_ _ _MF
1S0d,1500,HS6,t — LISO 1S0d,1S00,HS6,t—1 — 1SOd,HS6,t—1

MEN MFN
X (TISOd,HS6,t - TISOd,HS6,t—1> .
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Table B.8: Additional Evidence on Tariff Shocks and Technology Similarity

In Citationg, yse ¢ Similarity ;, ;g6
OLS IV OLS v
1) () (3) (4)
IntMEN -0.153* -0.010%*
‘ (0.076) (0.001)
IngpPried -0.187+* -0.013+*
(0.093) (0.002)
FE d-0-HS6 Yes Yes Yes Yes
FE 0-HS6-t Yes Yes Yes Yes
FE d-HS6-t Yes Yes Yes Yes
Exclude Consumption Goods Yes Yes
Observations 4,240,509 4,240,509 4,338,370 4,338,370
R? 0.937 0.937 0.994 0.994

Notes: * p < 0.10, ™ p < 0.05, *** p < 0.01. Standard errors are clustered at the d-0-HS6 level. Columns 1 and 3 report
reduced-form regressions using OLS, while columns 2 and 4 report the second stage of 25LS regressions using In Té\fg\slﬁ ;asan

s Applied
instrument for In T, o H1S6,1

Then, we aggregate both the applied and ‘pseudo’” MFN tariffs into the region-product level
by weighing on initial trade shares:

X .
MFN  _ ~MFN 1SOd,ISOo0,HS6,initial
Tio,HS6,t = T150d,1500,HS6,t ¥
T Isozded zsgeo AR Y IsOded 2a1500 o X1SOd!, IS0, HS6,initial
T;}pplied _ E TAp]zZilied % XISOd,ISOo,HSé,initial
JHS6,t = 1SOd,1S00,HS6,t -
° 1SOded 1SOoco 0 Y.1SOd'ed 221500’ €0 XISOM', 100’ HS6,initial

The (log of) MFN-binding tariff rates Té\fg\éat are then used as the instrument for the (log

of) effectively applied tariff rates T;Zp Iglsigdt. Since our regressions control for d-o-HS6 fixed

effects, this IV exploits the changes in the MFN rates for identification. When running the
regressions, we exclude the largest exporter for each importer-product pair to address the
concern that countries choose MFN tariffs with the major exporters in mind.

B.5.2 Citation as Alternative Measure and Excluding Final Goods

Table B.8 provides robustness checks for our results in Section 3.3. In the first two columns,
we show that we obtain similar findings using citation as an alternative measure of bilateral
similarity. In the last two columns, we show that the estimates are essentially the same when
goods for final consumers are excluded. This is reassuring because our model centers on
firms’ choice of intermediate suppliers and technologies. Our definition of final consumption
goods rely on the Classification by the Broad Economic Categories (BEC) and its mapping
with HS products provided by the UNSD.
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Appendix C Quantification

C.1 Proof of Proposition 8

We prove the proposition by guess and verification. Suppose that the distribution of produc-
tion cost is characterized by (28), and the ex-post technology distribution is characterized by
(30). Then, under Assumption 3, by taking the log of (5), we have
InC4(h) = In ( l ) + 9L In(wy)

Al

- 1 Z'y” In (Z/ ‘L'do -exp| é(k]A,o + m];q(é — n{L‘,o)z) — %ﬁ(() — 9)2] . o exp[—l(é kK

)?]dé
271,(0_]‘)2 2 ol
where
Ky +m, (0— n]A,o)z + 3E(0 — 0)?
J 17 j 17 J 2
; m,n', + 5t0 ; m,5t(0 —n
SR [ hat LUV i B
mA + jt mA + zt
which collects the quadratic term with respect to § and then 6.
< o i 4 lg , il
Since  ~ N(u, [0/]?),0 — %‘fizta ~ N(puh— %‘ﬁzte/ [07]%), apply Lemma A.8
A A
stated below and we have
. A . g —ul
[ expl=t(kly,+ )y @+ 1y )2 + Fi(0 — 0))] N exp[—%(e 1o 2149
271(07)2 o
: ; o mjnjo—&-lfG ; m lf(ﬂ—nj o)? 10— B
= [expl=g((nd, + 1) (E - A2 )2 4], AR — exp[— 5 (10 )?]dd
mly + 3F my + 3t 27(07)2 o
: mjlf(e—nloz . mjnjo+lf|9
= exp[—{ (K, + — 2] - Eexp[—{ (m)y + 300 -~ 2]
mA‘i’?t mA+§f
et +mg%ae_ng,o)’fi)].mzamj I exp( —§<mg+%f) YR L
A AT e RS T ST
A 2 2 A 2
— exp(—K,  — Llog[1+20(m! L aneyy - Sl — M)t e +20m (o)) Ho + 201 (@)
Ao 2 402 1+20mly (012 1+ 24 (m)y + 31)(01)? 1+ 20ml, (o7)2
Therefore,
InCi(6) =In( ) + 9" In(ag) ~ ¢ D (Ll espl= (ks + k(0 ),
d
=In (Z—’lj) + 4t In(wy) — ¢ E’y” In( Zexp C(InT)y, + Ky, + mp (0 — n]BIO)Z)]),

(C.1)
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where

, , . ! (y];—nj )2
K, =¥k o 1+27(nd, + LE) (o) + =2 _ Aol
B,o A,o g g[ ( 2 )( ) ] 1+2€m{4(0])2

i3 +2gm ()]
1+27(m)y + 3)(07)?
i Mo+ 20ml (o),

n .
Be 1+42¢m, (07)2
Consider
dln C’ ;
= Z,yl] Zxdo n%,o]
d2 ln CZ ; ; ; ;
;= ZW” Z Xo) (0)2m}y[0 — nly ] + Xy, (0)2my),
where

exp[~Z(In T}, + ki, + miy (6 — 15,)?)]
Y exp[—{(Int, + kB o (0 — 1) )2)]

4

Xdo(e)

with ¥, x/,(6) = 1.
We consider a second-order approximation with respect to 8 around a fixed éél,6 which
gives

InCi(6)
A .. . — . . 1 .. P . o
~InCy(0) + )" Zxﬁo(%)mfg(% —np,) (0 —0) + 5 Y 07N X ()2 (6 — 6;)°
- = 5

= (Lm0~ 6)) +22%d0()(9d nly (0 —81)] +InCi(0)
7 i Z] 1] m]B ,0

- (Z,qu ZXdOnBo Z’)/Z]mB ZX;]O Gd - 7/lBo ] +In Cd(ed) (CZ)
]
where
S v X, (65)
Xdo — ‘ ij' ]'/ 7
2]”)/ mB

with ¥, ; £ =1

6The derivation works for any éé. In the numerical implementation, we choose éﬁ, to be the mean of the
ex-post technology distribution, .
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This verifies the functional form in (28) with m’,, n’, , and k!, , satisfyin
A A Ad ymg

- Ky = g ML

7 1+2g(mA+ t)(a])

. G . y0+2§mA((TJ) n{“

nt — X\ll Yl] — Xl] ‘ : ’
Ad % do""B,o = do 1+2CmJA(0’])2

f4,d = lnCd 9d mA ZX;]O 9d - n]Bo ]2-

Consider the innovation decision in (o, ]) given by (15). Under Assumption 3, this is
equivalent to

maxexp[—14(8 — 6)?] - [Ch(6)]'~
Taking log and apply the quadratic approximation to In C} (6
meax(l — )y (0 =1y ) — 3¢(6 —6).
The first-order condition implies that

(1—n)mly(6 —n)y,)) = 3p(8—6),
which gives the policy function (29)

where
j
s (7 —1)m, o
0 1 j A,O’
3¢+ (n —1)my
1z
p=—2

3+ (1 = 1)y
Since the ex-ante technology distribution @), is Normal with mean ]Ité and variance (¢7)?,

the ex-post technology distribution @) is also Normal with mean y{; and variance (¢/)?,
where

y]; = o) -l-ﬁjﬁﬂ and o = plio.
This completes the proof of Proposition 8.

Lemma A.8. Suppose X ~ N(u,0?). Then for m <

2(72 7
2

m _
Elexp(mX?)] = exp(ﬁ)(l —2mg?) 172,

41



Proof.
E exp(mX?)
~ 1 1
-/ exp(®) ——s exp(— 5 (v — p)?)dx

1 1
~ [ (g (1~ 20072 2+ 2

*/ ex (71—2m02 [x— ! I“+ o 2)dx
) Vare PV T 22 1—2m?! T 1T 2me?”
2
_ mp ~1/2 / 1 1 2
= 1-2 — _
(] g2 (1~ 20 22 (1= ngz) P2 —ame?) 1 T T amez )
2
= exp(1 g o )(1—2mo?)~1/2,
where the last line applies that the integrand is a probability density function. ]

C.2 Algorithm to Solve the Equilibrium
Building on Proposition 8, we develop the following algorithm to solve the model.

Step 1. Given wages {w; } and parameters on geography {Té .} preference 7, production
technology {’yl] y'L, B, AL, 7, T, ¢}, and the ex-ante technology distribution {ji};, 7'}, we solve

for {k' Wiyl 4t and { ui, o'} to obtain the cost functions {C;(-)} and the ex-post technol-
ogy distributions. This involves simultaneously solving the following system of equations:

;zszg (C3)

ZXZD . (C.4)
e =InCi(u 2 27 (i) — nB hlk (C.5)
iy = o+ By (C.6)
o = pig' (C.7)
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where

L1 + 2gmil, (07)2]

mly = > AV (C.8)
1+2g(m)y + 3F)(07)?
; 1 ; 2ml, (02
Wy = ATy 9
1+ zgmA(m)z 1+20m/, (0)2
) ) ) ' mj (llj _nf )2
K, =K L +20(m, + 1) (01)?] 4+ —A2 A0 (C.10)
B,o Ao T § g[l ( AT 2 )(07)?] 1+2§m]( i)
i N j 2
)EZO _ vind, y exp| C(lan0+k +mB(yd nBO) )] €.1)

Z] ’)/l] m]B 20/ exp[—g(h’l Tdo/ + kB o' + mB (,ud - n]B’O/)Z)]

InCy(4f) = In( ) + 7" In(g) ~ £ Py In( el lin g, + Ky, (o~ )

d
(C.12)
iy —1)qu i _
g = 5+ (W_l)miand (1 B)niyq (C13)
1;
B = 29 - (C.14)

3¢+ (i —1)my
Here, (C.3) and (C.8) form a contraction mapping for {m,} with {¢’, '} determined by
(C.7) and (C.14). With {m', } and {07} solved, (C.4) and (C.5) form another contraction map-
ping for {nfq, Y ki‘, 4} when f is not too large, with {y;, nJB,O, k]B,O, )(go, In ij( ‘ué), zx;} determined
by (C.6), (C.9), (C.10), (C.11), (C.12) and (C.13), which can be evaluated directly.
Step 2. With objects solved in Step 1, the cost function {Cé (0)} can be constructed
from (C.2), and we can then explicitly evaluate the sourcing decisions of intermediate firms

Xy 0(9 9) and final-good producers 7, (6) forall 6,0 € T.
For any firm in (d, i) with technology location 6 to source input j, by (C.1),

(2], Ab(6)] ¢ = (e},) ¢ [Ich@ ~24@} ()
= exp[—{(In Tdo + kB/0 + mé(@ — n]];,o)z)].
Then, the probability density of sourcing from firms in country o with 8 in (6) is
(<), Ch(6)£(6,0)] ¢  exp[—Z(InT), +K,,+nly (B —nl, )+ 1E(0 — 0)?)]

X, (6,8) = =
Yo [Thy AL (8)]¢ Yo exp[—(In Ty, + Ky o, + iy (0 — 1y ,)2)]

(C.15)
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For final-good producers in country 4 to consume sector-j goods, by Lemma A.8,
(A7 = [ cl@®)rael@)
L b

= / exp[(1— ﬂ)(qup + il (6 — nglo)Z)] T expl-3

—_

i

o4

(1 — i)y (sh — 1l )2
1-2(1— )ml, (0)?2

My (4o = 1y,p)?

= exp[(1 — )k, ] x [1 —2(1 — y)m, ()2 7/ x exp]

=exp[(1—7) (K, , — log[1 —2(1 —n)m!, ()] + :
PIUI=1) (6, = gy ol =200 = (o] + -0 e )
Ekjc,o
Then, the expenditure density allocated to goods from country o with 8 in (10) is
_— Ui S
o @)= “fcfw)]l— _ expl(1—n)(Ingy/ +k,, +mfA<e—nJA,o>2>]_ 16
Lo [T A1 Lo exp[(1 —7)(In T/ + k)]

Step 3. With the sourcing decisions specified, we can combine the market-clearing con-
ditions (18) to (21) to arrive at a system of equations for {X] (0)} and {M] (0)}, taking as
given {w, }. We discretize the domain of 0, in which case the system of equations is linear in
{x}(0)} and {M.(6)} and can be easily solved.

Specifically, since the policy function (29) is invertible, summing over the market-clearing
conditions (20), (21) and (22), we get

P,Qy = ded+Z/nd ¢(8);8)d0) (9 +Z/Kd (0);6)dO)(9) (C.17)
— s+ 1 1= 006607 0) + 006 () O Xi@)04(0) (€19
= wyly +Z/ ﬁxg(e)dcagl(e). (C.19)
Substituting (C.15), (C.16) and (C. 19) back to (18) and (19), we get
X0 = DT [ ot @I+ 0= X500+ My0)]a0} o),

M@ = DT [ /(@00 - )Xi(0) + Mj(0)a0)(0).

To numerically approximate this system of equations, we discretize the domain of 6 into
6 €T ={t,0,,..0\,} and have
0, — 0 —t 3 — ON, — ONg—1

)/ [192 - 2 ’ 192 + 2 )/ eees [191\]9 - 2 /ﬁNg)}'

4o € {[61,0, —
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This transforms the system of equations into

B1ad] = DL L ol ()14 x [(iw‘L(l—i))xz;w)\dm+waMé<ﬁ>|dﬁu,

6)|dd| = ZEZV”M (8, 8)[dB] x [(1_ﬁ)xd( )|do] + M;(9)|dd]],

where | - | denotes the length of an interval. This is a linear system of equation for X;(#)|d®|
and M),(9)|dd|, two vectors of real numbers of length N x S x Np. In matrix form, this is

X Bx ,x Bm-x| |X
_ , C.20
[M} [BXAM BMAM] [M} (C.20)

where B’s are matrixes of coefficients depending on {k;,d, mi‘, n%,d, yf;l, (Ti} and parameters
. i u 5 5 .
{pfi’ Téa’ Tdo]’ ,),1], ,)/zL, gr 77} /
The linear system (C.20) is homogeneous of degree one. By adding a normalized equation
that total expenditures equal one, it can be solved to obtain {X}(8)} and {M}(8)}.

Step 4. Fmally, given the expenditures {X] (0)} and {MZ,(G)}, the ex-post technology
distribution {3/}, o'}, and parameters {L4, 7L, 77}, we can evaluate whether the labor-market
clearing condition, equation (22), is satisfied, i.e.,

1= 1, DI M@0+ - DXj(o)la])

If yes, then we have found an equilibrium; if not, update wages {w,} and return to step 1.

Other statistics in equilibrium. Once the model is solved, we can characterize the equi-
librium explicitly with a number of statistics. These would then allow us to evaluate both
consumer welfare and economic efficiency.

We define consumer welfare for each country 4 as
wyLg + 11y

p;
where w;L; are the total outputs (GDP) of country d, I1; are the total profits earned by
domestic firms, and P, the aggregate price index.

The total profits earned by domestic firms can be calculated as

= T [ 15(0)d05(6) = T [ expl=3("5" ~07] - X;(0)de}6).

To calculate the price index, recall that the sectoral-level price indexes are

Udz

(B =T ) [ Depl(1 - )ty + k)

"Note that (C.20) is homogeneous of degree 1. This can be verified by summing over o, j, and & on both sides.
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This gives the aggregate price index for each country as
InP; = Zp{i(ln Pé — lnp{i)

J
= Vel In(Texpl(1 = n)(n el + k)
j 0

1 L=y gy g
.+1_171n(1“(1+ 1 ) [;7_1] ) —Inpy]

- Z 1p_d,7 In(Y exp[(1— ) (InTy +k.,)]) + Zln(
] 0

In this economy, firms adopt new technologies in order to reduce the costs of being in-
compatible with suppliers. In equilibrium, the total costs due to technology incompatibility
incurred in each country can be calculated as

=YY Y. / / t((j(g)of)l . K1 (6,8) d@),(0)de}(d), (C.21)
i o ’
where the imports from (o, j,8) by (d,i,0) are
MY (8,0) = [M;(e) +(1- %)Xg(e) o 1o (6,0).
Correspondingly, the total technology adaptation costs spent by firms in each country are
Ki= Y [ Ki(0)d@(0) = ¥ [ (1 - exp[~L 1

9% gy, L Xi(6)d046).

ﬁi

C.3 Fitting the Posterior Technology Distributions

Before discussing the details of the calibration procedure, in this subsection, we explain how
we solve the problem in (33) as the first step. Under the assumption that model similarity

follows sim 1) = exp(— (i, — 11))?), the fitting problem for { pi;} solves

o ’ 2
min Z [ln(sim(y;, ;4{,) — ln(sim;{(’)D”t”)]
{mat djio,j
) . -
=min Y [(4h - 1h)* = D})|
{Mat djio,j
where simg(;Dm is the empirical technology similarity between country-sector pairs (d, i) and
(0,7), averaged over the period 2012-2014, and D)} = — ln(sim;]éDm) is a measure of bilateral

distance. Instead of solving this original problem, which is known to be difficult for locating
the global optimum, we transform it into a classical multidimensional scaling problem. This

transformation recognizes the fact that if Dgo is a true bilateral distance matrix in Euclidean
space, then by writing the summand of the objective into

(4 — @)%+ (4 — )% — 2(y — ) (b — 1) — D],
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one can first demean the rows and columns of D" ,» and fit

min Y [ — BY, (C.22)
{2} dio,j
s.t. Zﬂfi =0
d,i

where i, = ', — fi, and Bgo is the corresponding entry in the demeaned matrix B, defined

as B = —1CDC. Here, D = (D} ) is the bilateral distance matrix, and C = I — = /ns is the
centering matrix, with Jys being an NS x NS matrix of ones.

The solution to the transformed problem (C.22) is uniquely given by the eigenvector of
B associated with the largest eigenvalue, up to a scaling factor.® We further scale this eigen-
vector so that the standard deviation of the off-diagonal elements of the generated similarity
matrix between country-sectors matches the data counterpart.

C.4 Algorithm for Calibration

This subsection discusses the details of calibration to recover the primitive of the model.
Aside the parameters calibrated externally, we jointly determine the remaining parameters
on technology distributions {fi), 5/}, technology adaptation costs ¢, input incompatibility
costs f, and those determining production and trade {'L’Zio, T(%] ,
rium conditions of the model.

The ex-ante technology distribution of countries are by assumption not observed. To
calibrate {fi}, 7'}, we use two pieces of information: the ex-post technology distribution,
and the one-to-one mapping from the ex-ante to the ex-post distributions characterized in
Proposition 8. As the mapping depends on all model primitives (such as trade costs) and the
equilibrium wage, the ex-ante distributions cannot be recovered independent of the rest of
the model. Instead, we recover the ex-ante distribution in two steps.

In the first step, we choose the parameters governing the ex-post distributions, {3, o'},
to match bilateral similarities between country-sectors, as in Appendix C.3. This step can be
carried out without knowing the primitives of the model. Conditional on their own tech-
nology, firms’ sourcing decisions only depend on the ex-post distributions. We can therefore
calibrate the primitives of the model governing trade using only the ex-post distributions
and other data. In the second step, we calibrate ¢ and recover the ex-ante distributions using
equation (30).

Trade costs and distribution of production techniques. With the ex-post technology

i}, leaning on the equilib-

distributions {@{J} at hand, we design a nested algorithm to jointly calibrate the parameters
{A}}, which determines the productivity of (d, i), to match the output share of (d,i) in in-

dustry 7, and calibrate {Té o7 TdLg } to match the trade shares of intermediate and final goods,
respectively. We lay out the algorithm as follows before discussing several details.
The nested algorithm. We describe the nested calibration algorithm below:

(A) Choose a t

(a) Choose a set of parameters {Té o T;gj , Aé}

8See e.g., Chapter 12 of Borg and Groenen (2007).
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(b) Solve the equilibrium given the parameters and the ex-post technology distribu-
tions {u}, o'}
(c) Evaluate the trade shares of intermediate and final goods at the equilibrium If

they match their data counterparts, proceed to Step (B); if not, adjust {TZi o Td o Afi}
and return to Step (A)(b).

(B) Simulate 10,000 Chinese firms from each of the 19 sectors and regress the extensive
margin of importing from each country o on the similarity between the technology of
a firm and the technology of country o, controlling for firm and country-industry fixed
effects.

(C) Compare the model-based regression coefficient in Step 2 to its data counterpart (Col-
umn 3 of Table 2). If they are close enough, exit; if not, adjust f and return to Step
(A).

In Step (A)(b), we need to solve the trade equilibrium conditional on the ex-post distri-
bution and parameters. This differs from the algorithm developed in Section C.2, which
solves the general equilibrium (in which technology choice is endogenous). We modify the
algorithm accordingly. Specifically, the system of equations from Step 1 of the algorithm in
Section C.2 can be now simplified into

mly = nyijm]
N
nA d — ZXdOnB 0

A,d = lncd ZXZO _”Bo )J?

where
), = %f[l%—?émg((ﬂ)z] ,
1424 (m)y + 3) (07)?
i 1 i 2oml, (00)?
MBo = 7 ot T A
1+2§mA(UJ) 142¢m,(07)
. . , . m (]4{; i )2
K, =k LIS [1+27(m!, + LF)(07)?) 4+ 2240
B,o Ao T 20 & AT2 1+2§mJA(UJ')2
g = b eplllng, +ky, + (ks — n, )]
do —

Z] ij/m]B 20/ eXp[_€<ln Tdo/ + kB o’ + mB (]’ld - n]B,o’)z)]

In C (1) = ln(A )+ 7L In(wy) 1zwin Zexp C(InT) + Ky, + mly (s — 1y ,)2)])
d

Given wages {w; } and parameters { Td o Td o Afi} this is a contraction mapping with f being
not too large and can be efficiently solved.
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The remaining steps to solve the equilibrium follow exactly with

J (0,8) = PIEnTs +Ky, (8=, 4 50— 6)%) 2
dot Y exp[~{(in o+ kB o+ (6 — 1y )2)] '
@ = Pl T K+ (01, )2)]
“ Lo expl(1 - ﬂ)(lnfdo/ )

H1dd] = DY Lol (3)1431 [<; wl—;»X;wndm+vaM;<z9>|dz9H

0)|dd| = ZZZW’% (8,9)[dd] x [(1— ﬁ)Xd( )|do] + M (6)]d8]].

The equilibrium is reached when wages {w;} satisfy the labor-market clearing condition
given by

—zzw Mi(9 |ow|+<1—;>xd< )[do)].

In equilibrium, we calculate the trade shares in final and intermediate goods as
Y, ]
1. .
e it 1), = D00 (8 B)lad (1 - )X0)1d0] + My (#) o)
2 Mdo’ n
1 : 1

<
Do yith %, = = DLl (D)0 G 41— )X} 1d0] + 0 (0) o]
Zo’ do’ Ui Ui
We match these two statistics to their data counterparts constructed from WIOTs, both aver-
aged over 2012-2014.
In Step (B), for each value of f, we simulate 190,000 Chinese firms (d = CHN), 10,000
from each sector i with 6 drawn from the calibrated ex-post distribution ®,. With parameters

{’L’é o Td o /, Al} calibrated, we can explicitly determine the input sourcing and patent citation
patterns for each firm. Specifically, a firm with technology location € from (d, i) would source

input from (o, j) with probability ¥/, (6) given by
Tho = [ Kule,8)d0L(@),

with )(Zi ,(6,0) given by (C.23), and the average similarity between the technology of the firm
and that of (o, ) is

3 Eszm =3 Eexp )2)

Then, we regress the reahzed extensive margin of importing from each country o on the aver-
age similarity constructed above, controlling for firm and country-industry fixed effects. We
calibrate f = 12.2 to match this coefficient to 0.021, the extensive-margin import-similarity
correlation obtained from the regression results in Column 3 of Table 2.

Notice that the above algorithm does not rely on the value of parameter ¢. This is be-
cause that conditional on the ex-post distribution, varying ¢ only affects the split of firms’
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markup between profit to the representative consumer and the expense on adaptation. In
other words, ¢ only affects the welfare of agents but not other equilibrium prices and alloca-
tions. For this reason, we can calibrate ¢ separately.

Calibrate ¢ and the ex-ante distributions. With all other model primitives calibrated, the
last step is to calibrate ¢, the parameter on adaptation costs. We calibrate it by matching the
elasticity of similarity to tariffs (Column 3 of Table 4). As shown in Proposition 4, conditional
on trade shares and ')/if , this elasticity identifies ¢. To obtain the elasticities in the model, we
replicate the variation in MEN tariffs observed in the data, scaling the model’s trade cost

{t],} by the standard deviation of the MFN tariff for each (d,j) over time. We then treat
the calibrated equilibrium and the counterfactual as two periods and regress the model’s

technology similarity between d and (o, j) on the logarithms of 7}, controlling for d-o-j, 0-j-t,
and d-t fixed effects, mirroring the empirical specification. We adjust ¢ until the model’s
elasticity matches the empirical coefficient of —0.007, yielding a calibrated value of ¢ = 0.58.

With ¢ specified, we can then recover the ex-ante technology distribution by equations
(29) and (30), i.e.,

L1, 1=p
V&ZE'VZ— Bi '”2,51
1.
(7'1:*.‘0'1
ﬁl
1z
with f = 2

This completes the calibration.
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